
Building Reliable and Practical Byzantine Fault Tolerance

By

Sisi Duan
B.S. (The University of Hong Kong) 2010
M.S. (University of California, Davis) 2011

Dissertation

Submitted in partial satisfaction of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Office of Graduate Studies

of the

University of California

Davis

Approved:

Dr. Karl Levitt (Co-Chair)

Dr. Sean Peisert (Co-Chair)

Dr. Matt Bishop

Committee in Charge

2014

-i-

Copyright © 2014 by

Sisi Duan

All rights reserved.

To my family, for everything in my life.

-ii-

Building Reliable and Practical Byzantine Fault Tolerance

Abstract

Building online services that are both highly available and correct is challenging.

Byzantine fault tolerance (BFT), a technique based on state machine replication [72,

101], is the only known general technique that can mask arbitrary failures, including

crashes, malicious attacks, and software errors. Thus, the behavior of a service

employing BFT is indistinguishable from a service running on a correct server.

This dissertation presents three practical BFT protocols, hBFT, BChain, and

ByzID. Each protocol takes a different approach enhance the practicality of existing

practical BFT protocols under certain network conditions and threat models. hBFT

moves some jobs to the clients with minimum cost. The protocol is much simplified

while faulty clients are tolerated. BChain uses chain replication while faulty replicas

are diagnosed and eventually reconfigured. ByzID uses intrusion detection methods

to build a Byzantine failure detector. Faulty replicas are detected immediately and

performance attack can be perfectly handled. In the end, we present P2S, a gen-

eral framework of adapting existing fault tolerance techniques to pub/sub, with the

aim of reducing the burden of proving the correctness of implementation. The ex-

perimentation results validate all the work, showing different degree of performance

improvement over traditional protocols.

-iii-

Acknowledgments

First, I must thank my advisors, Karl Levitt and Sean Peisert, for their constant

support and mentoring. They have guided me not only in my work and research but

also in my life. I am so fortunate to have been able to work closely with them.

I am also lucky to work closely with Hein Meling. He gave me a lot wise advice

and support in my research. I greatly appreciate his help, especially during my visit

in Norway.

The other professors and mentors in security group, Matt Bishop, Felix Wu, and

Jeff Rowe gave me many suggestions to my work and my dissertation. It has been a

pleasure to work with them.

I am grateful to be a graduate student at UC Davis. I want to thank all my

labmates and friends for making my PhD life an amazing and unforgettable journey:

Yaohua Feng, Andy Chih, Tiancheng Chang, Yun Li, Yuxi Hu, Fei Yu, Jinrong Xie,

Shengren Li, Xi Jiang, Ye Zhang, Sharmin Jalai, Mohammad Rezaur Rahman, Yi

Zhang, Jia Liu, Wei Liu, Haifeng Zhao, Xin Sun, Yixuan Zhai, Mianfeng Zhang,

Yuanzhe Li, Changyung Lin, and Mina Doroud. Special thanks to Vincent Tam, for

not only being my undergraduate advisor, but also a friend in my life.

Above all, I want to thank my husband, Haibin Zhang, for being my friend and

my co-author; my parents and all my family, for giving me everything in my life.

Without their support I cannot make it through the whole process.

This research is based on work supported in part by the National Science Foun-

dation under Grants Number CCF-1018871, CNS-0904380, and CNS-1228828. The

ByzID work was also supported in part by a Leiv Eiriksson Mobility Grant from

RCN.

The following papers, which have been previously published or are currently in

-iv-

submission, are reprinted in this dissertation with the full permission of all co-authors

of the papers:

• hBFT: Speculative Byzantine Fault Tolerance With Minimum Cost. Sisi Duan,

Sean Peisert, and Karl Levitt. IEEE Transactions on Dependable and Secure

Computing (TDSC), March 2014.

• BChain: Byzantine Replication with High Throughput and Embedded Recon-

figuration. Sisi Duan, Karl Levitt, Sean Peisert, and Haibin Zhang. Proceed-

ings of the 18th International Conference on Principles of Distributed Systems

(OPODIS), to appear, 2014.

• Byzantine Fault Tolerance from Intrusion Detection. Sisi Duan, Karl Levitt,

Hein Meling, Sean Peisert, and Haibin Zhang. To appear in Proceedings of the

33rd IEEE International Symposium on Reliable Distributed Systems (SRDS),

pp. 253–264, 2014.

• P2S: A Fault-Tolerant Publish/Subscribe Infrastructure. Tiancheng Change,

Sisi Duan, Hein Meling, Sean Peisert, and Haibin Zhang. Proceedings of the 8th

ACM International Conference on Distributed Event Based Systems (DEBS),

pp. 189-197, 2014.

-v-

Contents

Abstract . ii

Acknowledgments . iv

List of Figures . xi

1 Introduction 1

1.1 Challenges . 2

1.2 Contributions . 3

1.2.1 Improving the performance . 5

1.2.2 Tolerating more failures using trusted IDS component 6

1.2.3 Enhancing the resilience . 6

1.2.4 Preventing from performance attack 7

1.3 Organization . 8

2 Background 9

2.1 System Model . 9

2.1.1 Faulty behaviors . 10

2.1.2 Service property . 11

2.2 Fault tolerant state machine replication 11

2.3 Intrusion detection systems . 16

2.4 Reliable publish/subscribe systems 17

3 hBFT: Speculative Byzantine Fault Tolerance With Minimum Cost 20

3.1 Introduction . 21

3.1.1 Motivation . 22

3.2 The hBFT Protocol . 23

-vi-

3.2.1 Agreement Protocol . 26

3.2.2 Checkpoint . 32

3.2.3 View Changes . 33

3.2.4 Client Suspicion . 35

3.2.5 Correctness . 39

3.2.6 Liveness . 42

3.3 Discussion . 45

3.3.1 Timeouts . 45

3.3.2 Speculation . 46

3.4 Evaluation . 46

3.4.1 Throughput . 47

3.4.2 Latency . 50

3.4.3 Fault Scalability . 52

3.4.4 A BFT Network File System 55

3.5 Conclusion . 56

4 BChain: Byzantine Replication with High Throughput and Em-

bedded Reconfiguration 61

4.1 Introduction . 62

4.2 BChain-3 . 64

4.2.1 Conventions and Notations . 65

4.2.2 Protocol Overview . 67

4.2.3 Chaining . 67

4.2.4 Re-chaining . 69

4.2.5 View Change . 75

4.2.6 Reconfiguration . 77

-vii-

4.3 BChain without Reconfiguration . 79

4.4 Optimizations and Extensions . 81

4.5 Evaluation . 85

4.5.1 Performance in Gracious Execution 86

4.5.2 Performance under Failures 89

4.5.3 A BFT Network File System 92

4.6 Future Work . 93

4.7 Conclusion . 94

5 Byzantine Fault Tolerance from Intrusion Detection 95

5.1 Introduction . 96

5.2 Conventions and Notations . 99

5.3 Byzantine Failure Detector from Specification-Based Intrusion Detec-

tion . 100

5.3.1 Byzantine Failure Detector Specifications 101

5.3.2 The IDS Algorithm . 103

5.4 The ByzID Protocol . 105

5.4.1 The ByzID Protocol . 107

5.4.2 The ByzID-W Protocol . 116

5.5 ByzID Implementation with Bro . 116

5.6 Performance Evaluation . 118

5.7 Failures, Attacks, and Defenses . 123

5.7.1 Performance During Failures 123

5.7.2 Performance under Active Attacks 124

5.7.3 IDS Crashes . 126

5.8 NFS Use Case . 127

-viii-

5.9 Future Work . 128

5.10 Conclusion . 128

6 P2S: A Fault-Tolerant Publish/Subscribe Infrastructure 130

6.1 Introduction . 131

6.2 Background . 134

6.2.1 Fault Tolerance . 134

6.2.2 Pub/Sub . 136

6.3 P2S . 137

6.3.1 Goxos Architecture and Implementation 138

6.3.2 System Architecture and API 141

6.3.3 ZapViewers Application . 145

6.3.4 Broker Algorithm . 147

6.4 Evaluations . 149

6.4.1 Experiment Setup . 149

6.4.2 End-to-End Latency . 150

6.4.3 Broker Throughput . 151

6.4.4 Scalability . 153

6.5 Future Work . 154

6.6 Conclusion . 155

7 Comparison 159

8 Conclusion 167

APPENDICES 178

-ix-

A BChain Theorems and Proofs 178

A.1 BChain-3 Re-chaining-I . 178

A.2 BChain-3 Re-chaining-II . 183

A.3 BChain-3 Safety . 183

A.4 BChain-3 Liveness . 189

-x-

List of Figures

1.1 Comparison of the protocols. 4

3.1 Layered Structure of hBFT. 24

3.2 Fault-free and normal cases of Zyzzyva. 24

3.3 hBFT: The agreement protocol . 26

3.4 hBFT: Throughput for the 0/0 benchmark. 47

3.5 hBFT: Throughput for 0/0, 0/4, 4/0 and 4/4 benchmarks. 48

3.6 hBFT: Latency for the 0/0 benchmark. 50

3.7 hBFT: Latency for 0/0, 0/4, 4/0 and 4/4 benchmarks. 51

3.8 hBFT: Fault scalability using analytical model. 58

3.9 Fault scalability of hBFT: latency. 59

3.10 Fault scalability of hBFT: throughput. 59

3.11 hBFT: NFS evaluation with the Bonnie++ benchmark. 60

4.1 BChain-3. Replicas are organized in a chain. 66

4.2 BChain-3 common case communication pattern. 68

4.3 BChain-3 Example(1) . 72

4.4 BChain-3 Example(2) . 73

4.5 BChain-5. 80

4.6 BChain: Protocol Evaluation-1. 84

4.7 BChain: Protocol Evaluation-2. 85

4.8 NFS Evaluation with the Bonnie++ benchmark. 93

5.1 The IDS/ByzID architecture. (Components shown on gray back-

ground are considered to be trusted.) 100

-xi-

5.2 Queue of client requests. 102

5.3 The ByzID protocol message flow. 107

5.4 ByzID equipped with IDSs. 107

5.5 An example for Step 4 of ByzID. 109

5.6 ByzID analyzer based on Bro. 117

5.7 Throughput for the 0/0 benchmark as the number of clients varies.

This and subsequent graphs are best viewed in color. 120

5.8 Latency for the 0/0, 0/4, 4/0, and 4/4 benchmarks. 121

5.9 Throughput after failure at 1.5 s (2.0 s for Aliph). 124

5.10 NFS evaluation with the Bonnie++ benchmark. The † symbol marks

experiments with failure. 127

6.1 The Paxos Protocol. 134

6.2 Publish/Subscribe architecture with three agent roles 136

6.3 Goxos Architecture [61]. 139

6.4 Goxos interface. 140

6.5 P2S System Architecture. 142

6.6 P2S Client Library. 143

6.7 P2S Client Handler. 144

6.8 ZapViewers application interface. 146

6.9 ZapViewers Application Architecture. 147

6.10 End-to-end latency for various numbers of publishers 151

6.11 Broker throughput for varying number of publishers. 152

-xii-

List of Algorithms

1 Primary . 29

2 Backup . 30

3 Client . 31

4 Failure detector at replica pi . 70

5 BChain-3 Re-chaining-I . 72

6 BChain-3 Re-chaining-II . 74

7 View Change Handling and Timers at pi 77

8 BChain-5 Re-chaining . 80

9 The IDS Specifications . 104

10 Broker Algorithm . 157

-xiii-

Chapter 1

Introduction

As distributed systems become used increasingly widely, and in critical systems,

Byzantine failures generated by malicious attacks, and software and hardware er-

rors must be tolerated. Building online services that are both highly available and

correct is challenging. Byzantine fault tolerance (BFT), a technique based on state

machine replication [72,101], is the only known general software technique that can

mask arbitrary failures, including crashes, malicious attacks, and software errors.

The behavior of a service employing BFT is indistinguishable from the behavior of

a non-replicated service running on a non-faulty server. However, Byzantine pro-

tocols come at a cost of high overhead of messages and latency and cryptographic

operations. Therefore, protocols that can reduce overhead can be attractive building

blocks to support applications using these services such as storage systems [1,23,88]

and database systems [32].

1

1.1 Challenges

There are a few challenges in designing practical BFT protocols. First, BFT can

be too computationally expensive to be practical. BFT protocols usually introduces

significant overhead in peak throughput and latency compared to unreplicated ser-

vice. The number of cryptographic operations of the each server, which is directly

related to the number of messages in the protocol, is the key to the overall perfor-

mance. Since BFT usually involves several rounds of communication, the overhead

caused by the number of cryptographic operations can be high. In addition, due to

the design of protocols, each protocol works under certain network conditions and

threat models. It is challenging to design a “universal” protocol that is adaptive

to different conditions. For instance, PBFT [18] works well under contention, and

HQ [34] works well under low contention. Second, without using additional tools,

BFT protocols are known to tolerate f failures using at least 3f + 1 replicas [78].

This directly limits the scalability of the protocol. When the replicas grow in size in

wide area network, the overhead of both server deployment and communication in

the protocol grows accordingly. Third, only up to f failures are tolerated while the

remaining replicas must remain correct. Therefore, the same Byzantine failure affect-

ing multiple systems simultaneously and it is desirable to obtain implementations on

different operating systems or implement services through N-version programming.

Fourth, BFT protocols require high resilience where protocol remain correct in the

long run. In a long-lived system, more failures may occur during the time. It is

highly possible that more than f replicas fail, rendering the protocol incorrect and

replicas inconsistent. Therefore, in addition to tolerating failure, it is also necessary

to ensure that faulty replicas are eventually recovered so that the number of faulty

replicas not just continue to grow and eventually exceeds f .

2

1.2 Contributions

The goal of our research is to design and implement highly reliable, replicated BFT

protocols to overcome certain challenges in building practical BFT protocols. We

first developed hBFT, a hybrid protocol that moves some jobs to the clients with

minimum cost. It has been shown [54, 69] that by moving some jobs to the clients

the performance of traditional BFT protocols can be improved. However, it usu-

ally depends on the assumption that clients are correct. Otherwise, it may consume

other resources to guarantee correctness. For instance, Zyzzyva5 [69] requires 5f + 1

replicas to ensure safety. Also, to improve the performance in failure-free cases, per-

formance under replica failure may be sacrificed. hBFT, as a hybrid protocol, moves

some jobs to the clients while simultaneously tolerating faulty clients. In addition,

the performance under backup failure(s) is the same as the failure-free case. Second,

we developed BChain, a chain replicated protocol with failure reconfiguration. Chain

replication [50,107,108] is known to enjoy the benefits of high throughput and low la-

tency under contention. However, previous developed chain protocols [50,107] do not

tolerate Byzantine failures. Byzantine chain replication [108] employs a centralized

trusted computing base to tolerate Byzantine failures. In comparison, BChain uses

two key techniques to handle Byzantine failures without using additional trusted au-

thorities: peer-to-peer failure suspicion and reconfiguration. The peer-to-peer failure

suspicion scheme guarantees that within a certain number of rounds of suspicion, all

faulty replicas are eventually moved to the end of the chain. The reconfiguration

scheme ensures that the replicas moved to the end of the chain are replaced by new

ones. Correct replicas may be suspected and reconfigured. However, our protocol

guarantees that all the faulty replicas are reconfigured within certain rounds of peer-

to-peer suspicion. Third, we developed ByzID, a Byzantine fault tolerant protocol

3

that leverages intrusion detection methods. Each replica is equipped with a trusted

intrusion detection component that monitors the behavior of the replica. When an

alert is generated by the IDS, the corresponding replica is replaced by a new one.

Finally, we developed P2S, a crash tolerant Paxos-based [73] pulish/subscribe (pub-

/sub) middleware. It directly adapts existing fault tolerance techniques to pub/sub,

with the aim of reducing the burden of proving the correctness of the implemen-

tation. It is also provides a generic development framework for building various of

pub/sub applications under different models.

PBFT

Zyzzyva

hBFT

Cost to tolerate faulty client: 5f+1

Cost to tolerate faulty client: None

Move Jobs to Clients

A2M, TrInc

ByzID

BChain

Trusted Component

Fully
Connected

Safe when trusted components fail?
No

Safe when trusted components fail?
Yes, if the primary is correct

Higher
Resilience

Figure 1.1. Comparison of the protocols.

In comparison to existing approaches, our research primarily has the following

contributions, as illustrated in Fig. 1.1. We focus on hBFT, BChain, and ByzID

since they are Byzantine fault tolerant protocols, while P2S is considered as a general

middleware of using existing fault tolerant protocols in pub/sub systems.

4

1.2.1 Improving the performance

All the three protocols improve performance of existing state-of-the-art protocols

such as Zyzzyva and PBFT. They overcome the challenges and improve the perfor-

mance of different aspects. We will now discuss in the following.

Moving jobs to the clients. It has been shown [54,69] that by moving some jobs to

the clients, the performance of traditional protocols, such as PBFT can be improved.

For instance, Zyzzyva reduces the normal case operation of PBFT from three phases

to two, because replicas do not need to exchange the certificate of messages twice.

Instead, the clients collect messages from replicas and send the certificate to the

replicas only if necessary. Therefore, in the failure-free case, the performance can be

significantly improved. However, when there are failures, the performance may even

decrease. In addition, it requires 5f + 1 replicas to tolerate faulty clients.

hBFT moves jobs to the clients without being encumbered by some of these

trade-offs. In the failure-free case, the protocol is the same as Paxos [73], which also

contains two phases. The clients can help detect the faulty replicas. If the clients

are faulty, the replicas may be inconsistent temporarily. hBFT employs a PBFT-like

three phase checkpoint protocol to both perform garbage collection and detect the

inconsistency of replicas. Replicas recover through the checkpoint protocol. If the

clients are suspected to be faulty, they are prevented from sending further requests.

Using a partially connected graph. Compared to a complete graph where

replicas exchange messages through multicast communication channel, a partially

connected graph [15] is known to consume fewer resources in communication and

therefore can improve performance.

Both BChain and ByzID use a partially connected graph. BChain uses chain

replication, where replicas are ordered in a metaphorical chain. Each replica send-

5

s/receives messages to/from two replicas in total unless failure occurs. When there

are a lot of concurrent requests, the pipelining communication pattern helps the bot-

tleneck replica (the replica that performs the most cryptographic operations) perform

fewer cryptographic operations. On the other hand, ByzID uses a primary backup

approach, where the primary can send/receive messages to/from the backups and

the backups only send/receive messages to/from the primary. Since the backups do

not exchange messages through the multicast channel, the protocol is simplified and

the overall performance increases.

1.2.2 Tolerating more failures using trusted IDS component

ByzID relies on trusted intrusion detection components to tolerate f replicas using

at least 2f + 1 replicas. We have designed a general framework for constructing

Byzantine failure detectors based on specification-based intrusion detection systems

(IDS). As a result, the protocol is the same as the failure-free case of Zyzzyva. In

addition, when there are no failures, the IDS component passively monitors and

analyzes the messages, which introduces little overhead.

1.2.3 Enhancing the resilience

Resilience refers to the relation between the number of potentially faulty replicas and

the total number of replicas in the system. Each protocol is known to tolerate certain

portion of faulty replicas. In the long run, to make the system robust, protocols must

always be resilient to failures so as to remain correct. Therefore, it is necessary to

detect, diagnose, and recover faulty replicas. Both BChain and ByzID use replica

reconfiguration. In BChain, replicas suspect each other and send messages to the

head, which is the leader of the replicas. The head of the chain reassigns the order of

6

the replicas and moves the suspected replicas to the end of the chain. The suspected

replicas are reconfigured and replaced by new replicas. The reconfiguration of replicas

operates out-of-band, where all other replicas continue to run without waiting for

the reconfiguration procedures to complete. Therefore, it creates minimal overhead

for the protocol. Eventually, all the faulty replicas that have behaved incorrectly are

replaced by new replicas.

On the other hand, the IDS component of replicas in ByzID monitors the behavior

of each replica. If the IDS component at a replica generates an alert, the replica is

reconfigured. The primary reconfiguration operates in-band, where replicas wait

for the reconfiguration procedures to complete. The backup reconfiguration operates

out-of-band. Overall, the reconfiguration process causes minimum overhead since any

protocols need to call a process, such as view change to replace the faulty primary.

1.2.4 Preventing from performance attack

Legal but uncivil behaviors of replicas can make BFT protocols impractical. This

has been previously discuss in several papers [5, 29] about performance attacks on

PBFT. For instance, the faulty primary may manipulate the value of timeouts and

decrease the overall performance without being noticed.

Although our protocols are not vulnerable to the same performance attack, we

discussed the solutions to several possible performance attacks. In BChain, replicas

may manipulate the timeouts to decrease the performance. We explore a method of

adjusting timeouts to defend against the performance attack. Each replica consis-

tently monitors the time of sending and receiving messages and adjust the timeouts

accordingly. Eventually, the uncivil replicas can decrease the performance to a cer-

tain threshold.

7

In ByzID, due to the use of specification-based intrusion detection systems, we

are able to monitor the behaviors of all replicas. We design several specifications to

defend against a performance attack. For instance, the timely action specification is

used to monitor whether a replica responds to a message in a timely manner such

that any uncivil replicas cannot intentionally decrease the performance. On the other

hand, the fairness specification is used to monitor whether the primary orders the

requests according to the order of receiving them or any ordering policies according

to the requirement. In comparison to the solution where replicas monitor each other,

the solution using an external trusted component ensures stronger properties.

1.3 Organization

The following sections are organized as follows. We first discuss the system model,

background, and related work in Chapter 2. In Chapter 3 to Chapter 5 we present

the three major Byzantine fault tolerant protocols, hBFT, BChain, and ByzID re-

spectively. We also include P2S in Chapter 6, a general framework for building

reliable pub/sub systems based on an existing fault tolerant protocol. In Chapter 7,

we compare the overall performance of all four protocols presented in this disserta-

tion and discuss the strength and weakness of each protocol. We also discuss the

feasibility of using a fault tolerance library as an oracle based on our P2S protocol.

Finally, we conclude dissertation and discuss future work in Chapter 8.

8

Chapter 2

Background

2.1 System Model

State machine replication is the only known general approach that can be used to

replicate any service that can be modeled as deterministic state machine replication.

Such replicated state machine provides the same service with unreplicated state

machine.

We assume a system that can tolerate a maximum of f faulty replicas, using a

total of n replicas. In some of the chapters, we write t, where t ≤ f , to denote the

number of faulty replicas that the system currently has. In BFT protocols, clients

are involved. A client issues requests to invoke operations and waits for replies.

Replicas may be connected in a complete graph or an incomplete graph network.

However, for wide-area deployments, only a complete graph network makes sense.

We assume fair-loss links, where if a message is sent infinitely often by a correct

sender to a correct recipient, then it is received infinitely often. Furthermore, links

do not produce spurious messages and do not repeatedly perform more transmissions

than performed by the sender.

9

Note that one can use fair-loss links to build reliable links, but only when both

the sender and receiver are correct. However, our protocol needs to establish how to

build reliable links from fair-loss links even when the sender is potentially (Byzantine)

faulty. We therefore assume the fair-loss link abstraction. In ByzID, we use Intrusion

Detection Systems (IDSs) to monitor the behavior of replicas. We further assume

that adversaries are unable to inject messages on the links between the replicas. This

is reasonable when all replicas are monitored by IDSs and they reside in the same

administrative domain. We assume that IDSs are trusted components, but that they

may fail by crashing.

We use non-keyed message digests. The digest of a message m is denoted D(m).

We also use digital signatures. The signature of a message m signed by replica pi

is denoted 〈m〉pi . We say that a signature is valid on message m, if it passes the

verification w.r.t. the public-key of the signer and the message. A vector of signatures

of message m signed by a set of replicas U = {pi, . . . , pj} is denoted 〈m〉U .

In the following of the dissertation, we use the notions mentioned above. In case

of any notation difference, we will mention in the corresponding chapters.

2.1.1 Faulty behaviors

We classify the replica failures according to their behaviors. Weak semantics levy

fewer restrictions on the possible behaviors than strong semantics. We are interested

in various failure semantics. Crash failures, occur when the replicas might halt per-

manently and no longer produce any output. By timing failures, we mean any replica

failures that produce correct results but deliver them out of a specified time window.

We also consider Byzantine failures, where faulty replicas can behave arbitrarily and

a computationally bounded adversary can coordinate faulty replicas to compromise

10

the system.

2.1.2 Service property

A correct state machine replication protocol offers both safety and liveness provided

that at most f out of a total of n replicas are simultaneously faulty. The value of

f regarding n depends on both the failure semantics and the protocol. In the four

protocols we discuss in the following chapters, hBFT, BChain, and ByzID tolerate

Byzantine failures and P2S tolerates crash failures. hBFT and BChain tolerate f

Byzantine failures using at least 3f+1 replicas. ByzID tolerates f Byzantine failures

using at least 2f + 1 failures. As we will discuss in Chapter 5, ByzID tolerates

more failures than hBFT and BChain by employing intrusion detection techniques

in the protocol. Finally, P2S is a general framework in publish/subscribe systems.

As discussed in the following chapters about the semantics in pub/sub systems, it

tolerates f crash failures using at least 2f + 1 brokers.

Safety, which means requests are totally ordered by correct replicas, must hold

in any asynchronous system using state machine replication, where messages can

be delayed, dropped or delivered out of order. Liveness, which means correct clients

eventually receive replies to their requests, is ensured assuming partial synchrony [42]:

synchrony holds only after some unknown global stabilization time, but the bounds

on communication and processing delays are themselves unknown.

2.2 Fault tolerant state machine replication

Fault tolerance. We focus our discussion on Lamport’s formulation of Paxos-

style [73–75] consensus. Paxos and its variants tolerate f crash failures using at least

11

2f + 1 replicas. PBFT [18], the first practical Byzantine fault tolerant protocol, is

often viewed as a three-phase Paxos that tolerates f Byzantine failures using at least

3f+1 replicas. Several state-of-the art protocols aimed at enhancing the performance

by (1) Simplifying the protocol; and/or (2) Tolerating more failures with respect to

the same number of replicas.

It was shown that by directly eliminating one phase in PBFT [69, 85], the per-

formance can be enhanced. This is straightforward since the number of messages

and cryptographic operations can be reduced by around one third. However, this

is achieved at the cost of introducing additional requirements on the protocol. For

instance, clients must be trusted in Zyzzyva [69]. In order to tolerate faulty clients

however, 5f + 1 replicas must be used to tolerate f failures. hBFT and ByzID also

employ a two-phase protocol similar to Zyzzyva in the failure free cases. In hBFT,

it is possible that replicas are temporarily inconsistent. Replicas can be made con-

sistent by clients or replicas in other subprotocols. ByzID relies on the trusted IDS

component to guarantee correctness.

van Renesse and Schneider [108] first developed chain replication, and used it to

achieve high throughput and availability for replicated services in the crash failure

model. Following that first work [108], Aliph-Chain [50], explored how to secure

chain replication for Byzantine failures. In Aliph-Chain, requests are required to

be transmitted in a predetermined order (through authentication), and the tail is

responsible for sending replies to clients. However, Aliph-Chain itself does not at-

tain liveness unless all the replicas are correct, because even one crash failure can

cause it to abort indefinitely. According to Vukolic [111], BChain (as discussed in

Chapter 4) can be viewed as a protocol with “the strongest condition” by enhancing

chain replication with a “weak condition,” Aliph-Chain.

van Renesse, Ho, and Schiper [107] later proposed a Byzantine chain replication

12

protocol (and an implementation called “Shuttle”), that can tolerate f failures among

2f + 1 replicas. However, the protocol relies on a strong assumption. Namely, it

requires a trusted and Byzantine-fault resilient server to help achieve system liveness.

Each replica has to share all of its secret keys with trusted server (if MACs are used).

To implement such a trusted server, one would require yet another BFT protocol.

Furthermore, in order to prevent adversaries from attacking the trusted server, the

protocol must resort to a voting mechanism to avoid the leakage of secret keys.

Failure detectors. Failure detectors were introduced by Chandra and Toueg [22]

for solving consensus problems in the presence of crash failures. For each replica, a

failure detector outputs the identities of each replica that it detects to have crashed.

A perfect failure detector should satisfy the completeness and accuracy properties.

The former demands that all faulty replicas be detected, while the latter requires

that correct replicas never be falsely implicated. Several papers [8, 36, 83], such as

quiet process [83] and muteness detector [36], describe extensions to failure detectors

to address Byzantine failures and use them to solve consensus problem. Byzantine

failures, in contrast to crash failures, are not context-free, so it is not possible to

define and design failure detectors independently of the underlying protocols [36].

Therefore, for instance, consensus protocols from a muteness detector [38] have to

handle Byzantine failures other than mute failures at the algorithmic level. More-

over, consensus protocols that use extended Byzantine failure detectors are not yet

practical since they can only detect certain type of failures instead of “arbitrary”

failures.

Failure detection is also studied under a different name, fault diagnosis, which

goes beyond failure detection in that the former aims to determine what kind of fault

occurs and which components are responsible, while the latter only seeks to determine

that a fault occurred. One of classic formulations of system fault diagnosis was

13

developed by Preperata, Metze, and Chien [95] and the extended studied further [3,

96,102,112]. In ByzID as discussed in Chapter 5, an IDS associated with the primary

also serves as a Byzantine failure detector.

Shin and Ramanathan [103] presented the first study on how to identify faulty

processors in Byzantine consensus protocols. A number of extensions to that work

have also been made [55, 113,116]. The basic idea is that a proof of misbehavior for

a Byzantine fault is collected by executing a modified BFT protocol. However, it

requires several rounds of protocols to collect a huge volume of exchanged messages

to provide such proof. An adversary can render the system even less practical by

intermittently following and violating the protocol specification. Similarly, PeerRe-

view [53] can detect and deter failures by exploiting accountability. It builds a system

that replicas review and report the failure of other replicas. It ensures that faulty

behavior is detected and no correct node is observed to be faulty through the use of

secure logging and auditing techniques. Reputation systems such as EigenTrust [62]

can also be used to detect a family of Byzantine faults but they typically detect only

repeated misbehavior. BChain, as discussed in Chapter 4, achieves fault diagnosis

though is not perfectly accurate. No evidence is required to be regularly collected,

and no additional latency is introduced by intermittent adversaries.

State machine replication based on trusted components. Equivocation refers

to the behavior of an adversarial component that lies to other components in different

ways. This problem is precisely captured by the well-known the Byzantine generals

problem [78]. It was shown that the problem (and any consensus problem) cannot

be solved if more than one third of its processes are faulty. Fitzi and Maurer [46]

showed that with the existence of a “two-cast channel” (i.e., broadcast channel among

three players), Byzantine agreement is achievable if and only if the number of faulty

processes is less than a half. The result was later extended [31] for general multicast

14

channels.

Beginning with Correia et al. [33], a number of BFT approaches relying on (small)

trusted components to prevent equivocation and circumvent the one-third bound

have been developed, including A2M [26], TrInc [80], MinBFT and MinZyzzyva [110],

and CheapBFT [63]. All of these require only 2f + 1 replicas to tolerate f failures,

and they have to rely on signatures [27]. A2M uses trusted and append only logs

that limits the behavior of adversarial components and prevents them from deviating

from the correct cases. TrInc and MinBFT and MinZyzzyva use a trusted subsystem

that provides a monotonically increasing counter to guarantee that one message is

assigned with only one incremental counter value. Each replica is equipped with a

trusted component that signs and verifies the message and the counter value. If a

correct replica receives one message, it can be sure that no other replica ever receives

a message with the same counter value but different content. CheapBFT [63] further

develops the idea and explores how to use f +1 replicas for gracious execution, while

during uncivil executions it switches to MinBFT and thus uses again 2f + 1 replicas.

van Renesse, Ho, and Schiper [107] also proposed Shuttle, that can tolerate f failures

among 2f + 1 replicas. The protocol relies on a trusted and Byzantine-fault resilient

server to achieve liveness.

ByzID also falls into the category of using trusted components, but we deploy an

IDS that is not only more powerful but also simpler. Our approach achieves better

efficiency than the prior BFT protocols (with or without trusted components) both

during failures and in the absence of failures. We also use new approaches to design

our protocols in that ByzID does not use any signatures. But this does not contradict

the impossibility result of Clement et al. [27] that non-equivocation alone does not

allow for reducing the number of processes required to reach Byzantine agreement

in asynchronous environment, as we use other mechanisms to handle this.

15

Enhancing resilience. Another approach in BFT research has been the study of

how to improve the resilience under active attacks, such as Aardvark [29], Prime [5],

and Spin [109]. It was studied in previous work that uncivil behaviors of replicas

can also render the system slow. For instance, in PBFT, a faulty primary can

delay sending messages to replicas while not being replaced, which is denoted as

timeout manipulation. Aardvark and Prime enhance the resilience based on PBFT. In

addition, Spin builds a rotating leader mode based on PBFT to prevent from timeout

manipulation. In BChain and ByzID, we also discuss the methods to enhance the

resilience although they are different from a PBFT-like protocol. In BChain, we use

an adaptive adjustment on the values of the timers to prevent faulty replicas from

manipulating timeouts. Other than that, in ByzID, the IDS monitors the behaviors

of the replicas to enhance the resilience. One advantage of using trusted components

to achieve this is that some of the behaviors can not be detected by other replicas.

For instance, it achieves perfect fairness where the primary must order the incoming

requests in a certain order.

2.3 Intrusion detection systems

Specification-based intrusion detection. Specification-based intrusion detection

was proposed by Ko, Ruschitzka, and Levitt [68] as a means of detecting exploita-

tions of vulnerabilities in security-critical programs. In such a system, a sequence

of ordered events during the execution of a system is defined as system trace. A

specification defines the desirable sequence of execution that specifies the intended

behavior of the system. If one trace deviates from any valid system specification, it

is regarded as security violation.

Specification-based approaches require accurate specifications of the desirable sys-

16

tem behaviors, therefore having the ability of encompassing anomaly behaviors that

have not previously been exploited. Moreover, since the specification-based approach

is built upon manually-defined legitimate system behaviors, it can significantly de-

crease false positive rates [106].

Anomaly-based intrusion detection. Anonmaly-based intrusion detection was

proposed by Denning [35] as a means of detecting anomalous system activities. In

such a system, normal system activities are first defined in several ways, such as with

machine learning techniques and mathematical models. During the execution of a

system, anomalous behaviors are regarded as security violation.

Anomaly-based intrusion detection uses techniques to define normal behaviors,

which does not rely on manual efforts. However, since the techniques to define

desirable system behaviors [105] are not accurate enough, it may result in high false

positive rate.

2.4 Reliable publish/subscribe systems

Publish/subscribe systems involve three roles: 1) publishers who publish publica-

tions, which will be received by subscribers; 2) subscribers who subscribe to certain

content or topic through subscriptions, which will be received by publishers; and 3)

brokers who deliver publications or subscriptions between publishers and subscribers.

The publish/subscribe communication pattern for constructing event notification

services has strong performance and flexibility characteristics. While typical “pub/-

sub” services such as consumer RSS news feeds may tolerate some level of message

loss, enterprise applications often demand stronger dependability guarantees. As

a result, pub/sub has become an important cloud computing infrastructure and is

widely used in industry, e.g., in Google GooPS [98], Windows Azure Service Bus [97],

17

Oracle Java Messaging Service [90], and IBM WebSphere [16].

The topic of constructing reliable pub/sub systems has been widely studied [13,

20,43,59,64,65,94,104,120]. By using periodic subscription [59], subscribers actively

re-issue their subscriptions. By flooding the messages, this can prevent message loss

and ensure subscribers eventually receive all the publications to their subscriptions.

On the other hand, through event retransmission [20,43], brokers exchange acknowl-

edgment messages to ensure that the corresponding messages are delivered. Both

periodic subscription and event retransmission work well in preventing message loss

instead of handling broker/link failures. In order to guarantee that messages are cor-

rectly delivered in the presence of broker/link failures, several papers have proposed

redundant paths [20,64,65,104], where the overlay topology includes redundant paths

to ensure that at least one path between the corresponding publisher and subscriber

is correct. For instance, Gryphon [13] uses virtual brokers, where each broker maps

to one or more physical brokers, such that at least one broker is correct and forwards

the messages along the path. Indeed, the most straightforward way to use redundant

paths is to replicate every broker. However, this may consume high bandwidth and

become very inefficient in the absence of failures. Furthermore, prior work in this

area usually ensures that messages or events are delivered, where the order of events

are not considered.

There has been considerable work in developing total order algorithms [14,89]. A

class of algorithms arranges brokers into groups and uses interactions between groups

to compute message order [93]. This type of solution works well under static topology

since group membership knowledge can be difficult to maintain in dynamic networks.

On the other hand, it is natural to use a single sequencer or several decentralized

sequencers [81,115] to handle message order. A single sequencer is easier to maintain

but is a single point of failure. In contrast, decentralized sequencers are more resilient

18

to failure but require every message to be routed to a certain sequencer. This imposes

topology constraints and can be less efficient.

Several efforts [65,120] exploit the topology overlay in pub/sub systems to achieve

certain total ordering properties in the presence of broker/link failures. Kazemzadeh

et al. [65] use a tree-based topology and achieve per-publisher total order by having

each broker forward redundant messages to several brokers. A stronger pairwise total

order is achieved by Zhang et al. [120], where the intersecting broker of different paths

resolves the possible conflicts of message order. However, this has a more complex

algorithm to handle broker failures and is less efficient in the presence of failures. In

comparison, P2S takes the simplest yet effective topology and algorithm to achieve

pairwise total ordering in the presence of failures. In addition, the flexibility of the

framework and our fault tolerance library make it easy to adapt to more scalable

systems.

Fault tolerance techniques for highly available stream processing usually consider

that no data is dropped or duplicated [49,57,58,70]. Most of them assume a failover

model and require f + 1 replicas to mask up to f simultaneous failures. Similar to

some of the pub/sub approaches, replicated replicas ensure that at least one correct

replica continues processing. When an upstream replica fails, the downstream replica

switches to another correct upstream replica. Since at least one correct path exists

between the source and destination, the data stream can be delivered. SGuard [70]

uses replicated file systems to achieve fault tolerance. Each data chunk is replicated

on multiple nodes. The data sent by a client is spread to all replicated nodes so that

at least one piece is available. It also relies on a single fault-tolerant coordinator

using rollback and recovery.

19

Chapter 3

hBFT: Speculative Byzantine

Fault Tolerance With Minimum

Cost

The work presented in this chapter was first described in an earlier paper by Duan,

et al. [40]. We present hBFT, a hybrid, Byzantine fault-tolerant, replicated state

machine protocol with optimal resilience. Under normal circumstances, hBFT uses

speculation, i.e., replicas directly adopt the order from the primary and send replies

to the clients. As in prior work such as Zyzzyva, when replicas are out of order,

clients can detect the inconsistency and help replicas converge on the total ordering.

However, we take a different approach than previous work. Our work has four distinct

benefits: it requires many fewer cryptographic operations, it moves critical jobs to

the clients with no additional costs, faulty clients can be detected and identified,

and performance in the presence of client participation will not degrade as long as

the primary is correct. The correctness is guaranteed by a three-phase checkpoint

subprotocol similar to PBFT, which is tailored to our needs. The protocol is triggered

by the primary when a certain number of requests are executed, or by clients when

20

they detect an inconsistency.

3.1 Introduction

A number of existing protocols also reduce overhead on Byzantine agreement by

moving some critical jobs to clients [34,50,54,69,118,119]. But these protocols come

with trade-offs that we seek to avoid. Specifically, while they all provide better

performance in fault-free cases and reduce the message complexity, they sacrifice

the performance of normal cases and may even decrease the performance of fault-

free cases. For instance, the Zyzzyva [69] protocol is able to use roughly half of the

amount of messages and cryptographic operations that PBFT [18] requires. However,

Zyzzyva’s performance can be even worse than PBFT if at least one backup fails.

Additionally, these protocols simplify the design by involving clients in the agree-

ment. However, they all require clients to be correct in order to achieve protocol

correctness.

Therefore, our motivation for developing a new protocol is to improve perfor-

mance over PBFT without being encumbered by some of these trade-offs. Specif-

ically, we have three key goals: first, we wish to be able to show how critical jobs

can be moved to the clients without additional costs. Second, we wish to tolerate

Byzantine faulty clients. Third, we define the notion of normal case, which means

the primary is correct and there is at least one faulty backup while the number of

faulty backups does not exceed the threshold. We wish to provide better performance

for both fault-free cases and normal cases.

This chapter presents hBFT, a leader-based protocol that uses speculation to

reduce the cost of Byzantine agreement, while also maintaining optimal resilience,

utilizing n ≥ 3f + 1 replicas to tolerate f failures. hBFT satisfies all of our stated

21

goals. To accomplish this, hBFT employs several techniques. First, it uses spec-

ulation: backups speculatively execute requests ordered by the primary as well as

replies to the clients. As a result, correct replicas may be temporarily inconsistent.

Additionally, hBFT employs a three-phase PBFT-like checkpoint subprotocol for

both garbage collection and contention resolution. The checkpoint subprotocol can

be triggered by the replicas when they execute a certain number of operations, or

by clients when they detect the divergence of replies. In this way replicas are able

to detect any inconsistency through internal message exchanges. Even though the

three-phase protocol is expensive, it is not triggered frequently. Eventually hBFT

can ensure the total ordering of requests for all correct replicas with very low cost.

3.1.1 Motivation

Our goal for hBFT is to offer better performance by moving some critical jobs to the

clients while minimizing side effects that can actually reduce performance in many

cases in previous work [50,69,118,119].

First, hBFT moves some critical jobs to the clients without additional cost. Mov-

ing critical jobs to the clients is effective in simplifying the design and reducing

message complexity, partly because replicas do not need to run expensive protocols

to establish the order for every request. Nevertheless, it does not necessarily make

protocols more practical. Indeed, it may sacrifice performance in normal and even

fault-free cases. For instance, the output commit in Zyzzyva renders both fault-free

case and normal case slower. hBFT achieves a simplified design and better perfor-

mance for both fault-free and normal cases.

Second, hBFT can tolerate an unlimited number of faulty clients. Previous proto-

cols all rely on the correctness of clients. However, Byzantine clients can dramatically

22

decrease performance. For instance, in the protocols that switch between subpro-

tocols [50, 118, 119] (called abstracts in [50]), a faulty client can stay silent when it

detects the inconsistency. Even if the next client is correct and makes the protocol

switch to another subprotocol, replicas are still inconsistent because of this “faulty

request.” Similarly, in Zyzzyva, faulty clients can stay silent when they are supposed

to send a commit certificate to make all correct replicas converge. Faulty primaries in

this case can not be detected, eventually leading to inconsistencies of replica states.

Faulty clients can also intentionally send commit certificates to all replicas even if

they receives 3f + 1 matching messages, which decreases the overall performance.

Third, hBFT has the same operations for both the fault-free and normal cases.

This shows that in leader-based protocols, when the primary is correct, all the re-

quests are totally ordered by all correct replicas. Previous protocols all achieve im-

pressive performance in fault-free cases while they employ different operations when

failure occurs, resulting in lower performance. Although Zyzzyva5 [69] makes the

faulty cases faster, it requires 5f + 1 replicas to tolerate f failures. In hBFT, we

achieve better performance in both normal fault-free and normal cases using 3f + 1

replicas.

3.2 The hBFT Protocol

The hBFT protocol is a hybrid, replicated state machine protocol. It includes four

major components: (1) agreement, (2) checkpoint, (3) view change, and (4) client

suspicion. As illustrated in Fig. 3.1, we employ a simple agreement protocol for fault-

free and normal cases, and use a three-phase checkpoint subprotocol for contention

resolution and garbage collection. The checkpoint subprotocol can be triggered by

replicas when they execute a certain number of requests or by clients if they detect

23

View Changes
-Elect a new primary

Checkpoint (3 phases)
-Garbage collection

-Contention resolution

Agreement (2 phases)
-Speculative execution

-Same for fault-free and normal cases

Replica executes
a number

of requests

Replica
times out

Primary sends
<New-View>

Done with
Checkpoint

Client sends
<Panic>

Figure 3.1. Layered Structure of hBFT.

divergence of replies. The view change subprotocol ensures liveness of the system

and can coordinate the change of the primary. View changes can occur during

normal operations or in the checkpoint subprotocol. In both cases, the new primary

initializes a checkpoint subprotocol immediately and resumes the agreement protocol

until a checkpoint becomes stable. The client suspicion subprotocol prevents faulty

clients from attacking the system.

client

primary

replica

replica

replica

1

2

3

(a) Fault-free Case

client

primary

replica

replica

replica

1

2

3

2f+1 2f+1

(b) Normal Case

Figure 3.2. Fault-free and normal cases of Zyzzyva.

24

Why another speculative BFT protocol?

hBFT uses speculation but overcomes some that problems Zyzzyva experiences.

Zyzzyva [69] also uses speculation and moves output commit to the clients to enhance

the performance. If we replace digital signatures with MACs and batch concurrent

requests in Zyzzyva, the performance decreases in normal cases and even fault-free

cases. Fig. 3.2 illustrates the behavior of Zyzzyva [69]. Replicas speculatively execute

the requests and respond to the client. The client collects 3f + 1 matching responses

to complete the request. If the client receives between 2f + 1 and 3f matching

responses, it sends a commit certificate to all replicas, which contains the response

with 2f + 1 signatures. This helps replicas converge on the total ordering. However,

a commit certificate must be verified by every other replica, which causes computing

overhead for both clients and replicas. The use of MACs instead of digital signatures

makes Zyzzyva perform even worse than PBFT under certain configurations.1 For

a reply message r by replica pi, 〈r′, µi,c(r′)〉 must be sent to the client, where r′ =

〈r, µi,1(r), µi,2(r) · · ·µi,n(r)〉 and µx,y(r) denotes the MAC generated using the secret

key shared by px and py. Therefore, every replica must include 3f + 1 MACs for

every reply message (compared with 1 if digital signatures are used) and performance

is dramatically degraded. Assuming b is the batch size, the primary must perform

4 + 5f + 3f
b

MACs in normal cases, which is even worse than the 2 + 8f
b

MACs for

PBFT for some b and f . Thus in hBFT, we seek to avoid this problem.

25

client

primary

replica

replica

replica

1

2

3

Figure 3.3. The agreement protocol

3.2.1 Agreement Protocol

The agreement protocol orders requests for execution by replicas. The algorithms of

the agreement protocol for the primary, backups, and clients are defined in Algorithm 1

to Algorithm 3. As illustrated in Fig. 3.3, a client c invokes the operation by send-

ing a m = 〈Request, o, t, c〉c to all replicas where o is the operation, t is the local

timestamp. Upon receiving a request, as shown in Algorithm 1, the primary pi as-

signs a sequence number seq and then sends out a 〈Prepare, v, seq,D(m),m, c〉 to all

replicas, where v is the view number and D(m) is the message digest.

A 〈Prepare〉 message will be accepted by a backup pj provided that:

• It verifies the MAC;

• The message digest is correct;

• It is in view v;

• seq = seql + 1, where seql is the sequence number of its last accepted request;

• It has not accepted a 〈Prepare〉 message with the same sequence number in the

same view but contains a different request.

1Using MACs instead of digital signatures usually makes protocols much faster. In Aardvark [29],
on a 2.0GHz Pentium-M, openssl 0.9.8g can compute over 500,000 MACs per second for 64 byte
messages, but it can only verify 6455 1024-bit RSA signatures per second or produce 309 1024-bit
RSA signatures per second.

26

If a backup pj accepts the 〈Prepare〉 message, it speculatively executes the opera-

tion and sends a reply message 〈Reply, v, t, seq, δseq, c〉 to c and also a commit message

〈Commit, v, seq, δseq,m,D(m), c〉 to all replicas, where δseq contains the speculative

execution history.

In order to verify the correctness of the speculatively executed request, a replica

collects 2f+1 matching 〈Commit〉messages from other replicas to complete a request.

As shown in Algorithm 2, a replica collects matching 〈Commit〉 messages with the

same sequence number. If a replica receives f+1 matching 〈Commit〉 messages from

different replicas but has not accepted any 〈Prepare〉 message, it also speculatively

executes the operation, sends a 〈Commit〉 message to all replicas, and sends a reply

to the corresponding client. When the replica collects 2f matching messages, it

puts the corresponding request in its speculative execution history and completes

the request. However, it is possible that a replica receives f + 1 matching 〈Commit〉

messages from other replicas that are conflicting with its accepted 〈Prepare〉message.

Under such circumstances, the replica can simply send a 〈View-Change〉 message to

all replicas. If a replica votes for view change, it stops receiving any messages except

the 〈New-View〉 and the checkpoint messages. See §3.2.3 for the detail of the view

change subprotocol.

The exchange of 〈Commit〉 messages is to ensure that if at least f + 1 correct

replicas speculatively execute a request, all the correct replicas learn the result. If

any other correct replicas receive inconsistent messages, the primary must be faulty

and the replicas stop receiving messages until view change occurs.

A client sets a timeout for each request. As shown in Algorithm 3, a client

collects matching 〈Reply〉 messages to its request. If it gathers 2f + 1 matching

speculative replies from different replicas before the timeout expires, it completes

the request. If a client receives fewer than f + 1 matching replies before the timeout

27

expires, it retransmits the requests. Otherwise, when client receives between f+1 to

2f+1 matching replies before timeout expires, it facilitates the progress by sending a

〈PANIC, D(m), t, c〉c message to all replicas. If a replica receives a 〈PANIC〉 message,

it forwards the message to all replicas. If a replica does not receive any 〈PANIC〉

message from the client but receives a 〈PANIC〉 message from other replicas, it

forwards the 〈PANIC〉 message to all replicas. A 〈PANIC〉 message is valid if a

replica has speculatively executed m. If a replica accepts a 〈PANIC〉 message, it

stops receiving any messages except the view change and checkpoint messages.

There are two goals for replicas when forwarding 〈PANIC〉 messages. One is to

prevent the checkpoint protocol from occurring too frequently, which happens when

all the correct replicas receive the 〈PANIC〉 message before the checkpoint protocol

is triggered. Another is to prevent the clients from attacking the system by sending

〈PANIC〉 messages to a portion of the replicas. If a faulty client sends a 〈PANIC〉

message to a correct backup, the replica will stop receiving any messages while other

replicas still continue the agreement protocol. This forwarding mechanism ensures

that if at least one correct replica receives the 〈PANIC〉 message, all the replicas

receive the 〈PANIC〉 message and enter the checkpoint protocol.

The primary initializes the checkpoint subprotocol if it receives the 〈PANIC〉

message from the client or 2f + 1 〈PANIC〉 messages from other replicas. The

correctness of the protocol is therefore guaranteed by the three-phase checkpoint

subprotocol.

The panic mechanism facilitates progress when the primary is faulty. Specifically,

in a partial synchrony model where the value of a client’s timeout is properly set up,

if a correct client does not receive sufficient matching replies before timer expires,

the primary either sends inconsistent 〈Prepare〉 messages to the replicas or fails to

send consistent messages to the replicas. In this case, instead of using the traditional

28

Algorithm 1 Primary

1: Initialization:

2: A {All replicas}

3: seq ← 0 {Sequence number}

4: W {Set of 〈PANIC〉 messages}

5: on event 〈Request, o, t, c〉c
6: seq ← seq + 1

7: send 〈Prepare, v, seq,D(m),m, c〉 to A

8: send 〈Reply, v, t, seq, δseq, c〉 to c

9: on event 〈PANIC, D(m), t, c〉c from c

10: send 〈PANIC, D(m), t, c〉c to A

11: on event 〈PANIC, D(m), t, c〉c from A

12: if match(Wc) then

13: Wc.add {Add matching 〈PANIC〉 message}

14: if Wc.size = 2f + 1 then

15: Initialize checkpoint protocol

29

Algorithm 2 Backup

1: Initialization:

2: A {All replicas}

3: seqi ← 0 {Sequence number}

4: U {Set of 〈Commit〉 messages}

5: panic← F {If true, enter checkpoint protocol}

6: on event 〈Request, o, t, c〉c
7: send 〈Request, o, t, c〉c to the primary

8: on event 〈Prepare, v, seq,D(m),m, c〉

9: if seq = seqi + 1 then

10: seqi ← seq

11: send 〈Commit, v, seq, δseq,m,D(m), c〉 to A

12: send 〈Reply, v, t, seq, δseq, c〉 to c

13: on event 〈Commit, v, seq, δseq,m,D(m), c〉

14: if match(Useq) then

15: Useq.add {Add matching 〈Commit〉 message}

16: if Useq.size = f + 1 and seq = seqi + 1 then

17: seqi ← seq {Accept the message}

18: send 〈Commit, v, seq, δseq,m,D(m), c〉 to A

19: send 〈Reply, v, t, seq, δseq, c〉 to c

20: if Useq.size = 2f and seq = seqi then

21: complete(Useq) {Complete the request}

22: on event 〈PANIC, D(m), t, c〉c
23: if panic = F then

24: send 〈PANIC, D(m), t, c〉c to A

25: panic← T {Enter checkpoint protocol}

30

Algorithm 3 Client

1: Initialization:

2: A {All replicas}

3: V {Set of 〈Reply〉 messages}

4: send 〈Request, o, t, c〉c to A

5: start(∆) {Start a timer}

6: on event 〈Reply, v, t, seq, δseq, c〉

7: if match(Vseq) then

8: Vseq.add {Add matching 〈Reply〉 message}

9: if Vseq.size = 2f + 1 then

10: cancel(∆) {Complete the request}

11: on event timeout(∆)

12: if Vseq.size < f + 1 then

13: retransmit 〈Request, o, t, c〉c to A

14: else

15: send 〈PANIC, D(m), t, c〉c to A

approach where replicas detect the faulty primary themselves by waiting for longer

period of time, the client can directly trigger the checkpoint protocol in order to verify

the correctness of the primary. See §3.2.2 for details of the checkpoint subprotocol.

hBFT guarantees correctness while using only two phases. If the client has re-

ceived 2f + 1 matching replies, at least f + 1 correct replicas receive consistent order

from the primary. Therefore, all correct replicas receive at least f + 1 matching

〈Commit〉 messages. If those replicas do not receive the 〈Prepare〉 message, they will

execute the request. Otherwise, if they detect the inconsistency, they stop receiving

31

any messages until the current primary is replaced or the checkpoint subprotocol

is triggered. In the latter case, the inconsistency will be reflected and fixed in the

checkpoint subprotocol.

3.2.2 Checkpoint

We use a three-phase PBFT-like checkpoint protocol. The reasons are three-fold.

First, the agreement protocol uses speculative execution and replicas may be tem-

porarily out of order. The three-phase checkpoint protocols resolve the inconsisten-

cies. Second, if a correct client triggers the checkpoint protocol through the panic

mechanism, the checkpoint protocol resolves the inconsistencies immediately. Third,

the checkpoint protocol detects the behavior of the faulty clients if they intentionally

trigger the checkpoint protocol.

The checkpoint protocol works as follows. Only the primary can initialize the

checkpoint subprotocol, which is generated under either of the two conditions:

• the primary executes a certain number of requests;

• the primary receives 2f + 1 forwarded 〈PANIC〉 messages from other replicas.

In the latter condition, as mentioned in §3.2.1, when a replica receives a valid

〈PANIC〉 message, it forwards to all replicas. The goal is to ensure that all repli-

cas receive the 〈PANIC〉 message and also to prevent faulty clients from sending a

〈PANIC〉 message only to the backups, thereby making sure replicas will not erro-

neously suspect the primary due to the faulty clients.

The three-phase checkpoint subprotocol works as follows: the current primary pi

sends a 〈Checkpoint-I, seq,D(M)〉 to all replicas, where seq is the sequence number

of last executed operation, D(M) is the message digest of speculative execution

history M . Upon receiving a well-formatted 〈Checkpoint-I〉 message, a replica sends

32

a 〈Checkpoint-II, seq,D(M)〉 to all replicas. If the digest and execution history do

not match its local log, the replica sends a 〈View-Change〉 message directly to all

replicas and stops receiving any messages other than the 〈New-View〉 message.

A number of 2f + 1 matching 〈Checkpoint-II〉 messages from different replicas

form a certificate, denoted by CER1(M, v). Any replica pj that has the certificate

sends a 〈Checkpoint-III, seq,D(M)〉j to all replicas. Similarly, 2f + 1 〈Checkpoint-

III〉messages form a certificate, denoted by CER2(M, v). After collecting CER2(M, v),

the checkpoint becomes stable. All the previous checkpoint messages, 〈Prepare〉,

〈Commit〉, 〈Request〉, and 〈Reply〉 messages with smaller sequence number than the

checkpoint are discarded.

If a view change occurs in the checkpoint subprotocol, as described in §3.2.3, the

new primary initializes a checkpoint immediately after the 〈New-View〉message. The

same three-phase checkpoint subprotocol continues until one checkpoint is completed

and the system stabilizes.

3.2.3 View Changes

The view change subprotocol elects a new primary. By default, the primary has

id p = v mod n, where n is the total number of replicas and v is the current view

number. View changes may take place in the checkpoint protocol or the agreement

protocol. In both cases, the new primary reorders requests using a 〈New-View〉

message and then initializes a checkpoint immediately. The checkpoint subprotocol

continues until one checkpoint is committed.

A 〈View-Change, v + 1,P ,Q,R〉i message will be sent by a replica if any of

the following conditions are true, where P contains the execution history M from

CER1(M, v) the replica collected in previous view v, Q denotes the execution history

33

from the accepted 〈Checkpoint-I〉 message, and R denotes the speculatively executed

requests with sequence numbers greater than its last accepted checkpoint:

• It starts a timer for the first request in the queue. The request is not executed

before the timer expires;

• It starts a timer after collecting f + 1 〈PANIC〉 messages. It has not received

any checkpoint messages before the timer expires;

• It starts a timer after it executes certain number of requests. It has not received

any checkpoint messages before the timer expires;

• It receives f + 1 valid 〈View-Change〉 messages from other replicas.

Timers with different values are set for each case and are reset periodically.

When the new primary pj receives 2f 〈View-Change〉 messages, it constructs a

〈New-View〉 message to order all the speculatively executed requests. The system

then moves to a new view. The principle is that any request committed by the clients

must be committed by all correct replicas. The new primary picks up an execution

history M from P and a set of requests from the R of checkpoint messages. To select

a speculative execution history M , there are two rules.

A If some correct replica has committed on one checkpoint that contains execution

history M , M must be selected, provided that:

A1. At least 2f + 1 replicas have CER1(M, v).

A2. At least f + 1 replicas have accepted 〈Checkpoint-I〉 in view v′ > v.

B If at least 2f+1 replicas have empty P components, then the new primary selects

its last stable checkpoint.

34

Similarly, for each sequence number greater than the execution history M and

smaller than the largest sequence number in R of checkpoint messages, the primary

assigns a request according to R. A request m is chosen if at least f + 1 replicas

include it in R of their checkpoint messages. Otherwise, NULL is chosen. We claim

that it is impossible for f + 1 replicas to include one request m, and another f + 1

replicas include m′ with the same sequence number. Namely, if f +1 replicas include

a request m, at least one correct replica receives 2f+1 〈Commit〉messages. Similarly,

at least one correct replica receives 2f+1 commit messages with request m′. The two

quorums intersect in at least one correct replica. The correct replica must have sent

both 〈Commit〉 message with m and 〈Commit〉 message with m′, a contradiction.

The execution history M and the set of requests form M ′, which is composed of

requests with sequence numbers between the last stable checkpoint and the sequence

number that has been used by at least one correct replica. The new primary then

sends a 〈New-View, v+ 1,V ,X ,M ′〉j message to all replicas, where V contains f + 1

valid 〈View-Change〉messages, X contains the selected checkpoint. The replicas then

run the checkpoint subprotocol using M ′. The checkpoint subprotocol continues until

one checkpoint is committed.

3.2.4 Client Suspicion

Faulty clients may render the system unusable, especially for protocols that move

some critical jobs to the clients. In hBFT, unlimited numbers of faulty clients can

be detected. We focus on the “legal” but problematic messages a faulty client can

craft to slow down the performance or cause incorrectness. To be specific, a faulty

client can do the following:

• It sends inconsistent requests to different replicas. The primary may not be

35

able to order “every” request before the timeout expires. In this case, a correct

primary may be removed.

• It intentionally sends 〈PANIC〉 messages while there is no contention. The

unnecessary checkpoint subprotocol will be triggered, which slows down the

performance. However, if the client frequently triggers “valid” checkpoint op-

erations, the overall throughput decreases too.

• It does not send 〈PANIC〉 messages if it receives divergent replies, leaving

replicas temporarily inconsistent.

The client suspicion subprotocol in hBFT focuses on the first two. If the third

one occurs, the checkpoint subprotocol can be triggered by the next correct client if

it detects the divergence of replies or by the primary when replicas execute certain

number of requests.

To solve the first problem, we ask clients to multicast the request to the replicas

and every replica forwards the request to the primary. The primary orders a request

if it receives the request or if it receives f+1 matching requests forwarded by backups.

If a replica pi receives a 〈Prepare〉 message with a request that is not in its queue,

it still executes the operation. Nevertheless, such faulty behavior of clients will be

identified as suspicious, and if the number of suspicious incidents from the same

client exceeds certain threshold, pi will send a 〈Suspect, c〉i message to all replicas.

Another reason clients send their requests to all replicas is that there are many

drawbacks when clients send requests only to the primary.2 For instance, a faulty

2In some Byzantine agreement protocols, clients send requests only to their known primary. If
a backup receives the request, it forwards the request to the primary, expecting the request to be
executed. The client sets a timeout for each request it has. If it does not receive sufficient matching
responses before timeout expires, it retransmits the request to all replicas.

36

primary can delay any request, regardless of whether the primary receives the re-

quest from the client or other replicas. This would cause all clients to multicast their

requests to all replicas. In other words, a faulty primary makes all clients experience

long latency without being noticed. A faulty primary can also perform a perfor-

mance attack such as timeout manipulation, as discussed in other work [5, 29, 109].

Furthermore, it is also difficult to make clients keep track of the primary. If the client

sends its request to a faulty backup, the faulty backup can also ignore this request,

although it is supposed to forward the request to the primary. In many existing

protocols, all of these problems typically mean that the primary task for establishing

correctness is the process of detecting faulty replicas.

For the second problem where a faulty client intentionally sends a 〈PANIC〉 mes-

sage to the replicas to trigger the checkpoint subprotocol, the protocol naturally de-

tects the faulty behavior. Intuitively, if the request is committed in both agreement

protocol and checkpoint protocol without view change, the client can be suspected.

Nevertheless, a correct client might be suspected as well. For instance, the following

two cases are indistinguishable.

(1) The replicas are correct and reach an agreement in the agreement protocol. When

they receive the 〈PANIC〉 message from a faulty client, the request is committed

in the checkpoint protocol without view change and the client is suspected.

(2) The primary is faulty and the client is correct. The primary sends the request

to f + 1 correct replicas and another fake request to the remaining f correct

replicas. The f correct replicas will not execute th request. When the replicas

receive 〈PANIC〉 message and starts checkpoint protocol, the f faulty replicas

collude and make the request committed in the checkpoint protocol. Although

the f correct replicas learn the result and remain consistent, the correct client

37

will be suspected.

To distinguish the above two cases, we modify the agreement protocol by simply

replacing the MACs of 〈Prepare〉 messages with digital signatures, which is called

Almost-MAC-agreement. When a replica sends a 〈Commit〉 message, it appends

the 〈Prepare〉 message. If a client does not receive valid 〈Prepare〉 message from

the primary but receives from other replicas, it still executes the requests, sends

〈Commit〉 messages to other replicas, and sends a 〈Reply〉 to the client. Otherwise,

if a replica receives two valid and conflicting 〈Prepare〉 messages, it directly sends

inconsistent messages to all replicas and votes for view change. As proven in Claim 2

in §3.2.5, the protocol guaranteed that correct clients will not be removed. This

optimization can also solve the problem discussed in §3.3.1.

The modification of agreement protocol results in 2 + 1(sig)
b

cryptographic opera-

tions for the primary. To reduce the overall cryptographic operations, hBFT switches

between the agreement protocol and Almost-MAC-agreement when executing a cer-

tain number of requests.

The client will only be suspected when replicas are running Almost-MAC-agreement.

In addition, the client must be suspected by 2f + 1 replicas to be removed. If the

number of such incidents exceeds certain threshold, replicas will suspect the client

and send a 〈Suspect〉 message to all replicas. Similarly to the view change subproto-

col, if a replica receives f + 1 〈Suspect〉 messages, it generates a 〈Suspect〉 message

and sends to the replicas. If a replica receives 2f + 1 〈Suspect〉 messages, indicating

that at least one correct replica suspects the client, the client can be prevented from

accessing the system in the future.

Worst Case Scenario. We would like to analyze the worst case where a correct

client can be suspected, mainly due to the network failure. It happens if any of the

38

following is true:

(1) The request from client fails to reach f + 1 correct backups before the backups

receive the 〈Prepare〉 message. In this case, since the f + 1 correct backups do

not receive the request in the 〈Prepare〉 message, they will suspect the client.

(2) 〈Reply〉 messages from correct replicas fail to reach the client before the timeout

expires. Since the client does not receive 2f + 1 matching replies before the

timeout expires, the client sends 〈PANIC〉 messages while there is no contention.

The latter condition may occur due to an inappropriate value of the timeout regarding

the network condition or due to the attack by the primary. For instance, a faulty

primary can intentionally delay 〈Prepare〉 messages for some correct replicas, causing

correct clients to send a 〈PANIC〉 message even though replicas are “consistent.”

However, if the value of the timeout is appropriately set up using Almost-MAC-

agreement, as proven in Claim 2 in §3.2.5, correct clients will not be removed. To

set up an appropriate value, the clients adjust the values of the timeout during

retransmission. Namely, when the client retransmits the request, it doubles the

timeout and starts again. In this case, the value of the timeout will eventually be

large enough for the client to receive 〈Reply〉 messages.

3.2.5 Correctness

In this section, we sketch proofs for the safety and liveness properties of hBFT under

optimal resilience. For simplicity, we assume there are 3f + 1 replicas.

39

3.2.5.1 Safety

Theorem 1 (Safety). If requests m and m′ are committed at two correct replicas pi

and pj, m is committed before m′ at pi if and only if m is committed before m′ at

pj.

Proof. The proof proceeds as follows. We first prove the correctness of checkpoint

subprotocol, which follows the correctness of PBFT, as shown in Claim 1. We then

show the proof of the theorem based on the claim.

Claim 1 (Safety of Checkpoint). The checkpoint subprotocol guarantees the safety

property.

Proof. We now prove that if checkpoints M and M ′ are committed at two correct

replicas pi and pj in checkpoint subprotocol, regardless of being in the same view or

across views, M = M ′.

(Within a view) If pi and pj commit both in view v, then pi has collected

CER2(M, v), which indicates that at least f+1 correct replicas have sent 〈Checkpoint-

III〉 for M . Similarly, pj has CER2(M ′, v), which indicates that at least f + 1 correct

replicas send 〈Checkpoint-III〉 for M ′. Then excluding f faulty replicas, if M and

M ′ are different, at least one correct replica has sent two conflicting messages for M

and M ′, which contradicts with our assumption. Therefore, M = M ′.

(Across views) If M is committed at pi in view v and M ′ is committed at pj in

view v′ > v, M = M ′. If M ′ is committed in view v′, then either condition A or B

must be true in the construction of the 〈New-View〉 message in view v′ (see §3.2.3).

However, if M is committed at pj in view v, pj has CER2(M, v), which indicates

that at least f + 1 correct replicas have CER1(M, v) and M in the P component.

Therefore, condition B cannot be true. For condition A, M ′ is committed at pj

40

in view v′ if both A1 and A2 are true. A2 can be true if a faulty replica sends a

〈View-Change〉 message that includes 〈M ′, D(M ′), v1〉, where v < v1 ≤ v′. However,

condition A1 requires that at least f + 1 correct replicas have CER1(M ′, v′). Since

at least f + 1 correct replicas have CER1(M, v), they will not accept M ′ in any

later views. At least one correct replica sends conflicting messages, a contradiction.

Therefore, we have M = M ′.

To prove Theorem 1, we first show that if two requests m and m′ are committed

at correct replicas pi and pj, m equals m′. Then we show that if m1 is committed

before m2 at pi, m1 is committed before m2 at pj. The former part is shown across

views and within the same view.

(Within a view) There are three cases: the two requests are committed in agreement

subprotocol, two requests are committed in checkpoint subprotocol, one of them

is committed in the agreement subprotocol and the other one is committed in the

checkpoint subprotocol. In the first case, if m is committed at pi, pi receives 2f + 1

〈Commit〉 messages if the request is committed in agreement protocol. On the other

hand, if m′ is committed at pj, pj receives 2f + 1 〈Commit〉 messages. The two

quorums intersect in at least one correct replica. At least one correct replica sends

inconsistent messages, a contradiction. Therefore, m equals m′. The second case is

proved in Claim 1. In the third case, if m is committed at pi, pi receives 2f + 1

〈Commit〉 messages if the request is committed in the agreement protocol. On the

other hand, if m′ is committed at pj in checkpoint protocol, at least 2f + 1 replicas

have certificate with m′ in their execution history. The two quorums of 2f+1 replicas

intersect in at least one correct replica, who sends a 〈Commit〉 message with m in

the agreement protocol and includes m′ in its execution history in the checkpoint

protocol, a contradiction. To summarize, we have m equals m′ if they are committed

41

in the same view.

(Across views) If m is committed at replica pj, 2f + 1 replicas send 〈Commit〉 mes-

sages. At least f+1 correct replicas accept m, which will be included in their 〈View-

Change〉 messages. On every view change, the new primary initializes a checkpoint

subprotocol to make the same order of requests committed at all the correct replicas

in the 〈New-View〉 message. The correctness follows from Claim 1.

Then we show that if m1 is committed before m2 at pi, m1 is committed before m2

at pj. If a request is committed at a correct replica, 2f + 1 replicas send 〈Commit〉

messages. Since two quorums of 2f + 1 replicas intersect in at least one correct

replica pi, m1 is committed with sequence number smaller than m2. According to

the former proof, if m1 and m2 are committed at pj, they are committed with the

same sequence numbers.

By combining all the above, safety is proven.

3.2.6 Liveness

Theorem 2 (Liveness). Correct clients eventually receive replies to their requests.

Proof. It is trivial to show that if the primary is correct, clients receive replies to their

requests. In the following, we first show that correct clients will not be removed. We

then prove that faulty replicas and faulty clients cannot impede progress by removing

a correct primary.

Claim 2 (Correct Client Condition). If the values of the timeouts are appropriately

set up, correct clients will not be removed if they trigger a checkpoint.

Proof. If a correct client receives between f + 1 to 2f + 1 matching replies for a

request m, it triggers the checkpoint subprotocol. To remove a correct client, m

42

must be executed by f + 1 replicas in the Almost-MAC-agreement protocol and

committed in the checkpoint subprotocol without view changes. Among the f + 1

replicas that accept 〈Prepare〉 message in the agreement protocol, at least one is

correct. If it receives a 〈Prepare〉 message, it appends to 〈Commit〉 message and

sends to all replicas. If at least one correct replica receives a valid and conflicting

〈Prepare〉message from the primary, it will send inconsistent messages and eventually

all the correct replicas vote for view change, a contradiction that view change does

not occur. Therefore, no correct replica receives a different 〈Prepare〉 message. In

addition, if a correct replica does not receive a valid 〈Prepare〉 message from the

primary and receives a valid 〈Prepare〉 message appended to the 〈Commit〉 message,

it will accept the 〈Prepare〉 message and sends 〈Reply〉 message to the client. In this

case, the client receives 2f +1 matching replies, a contradiction with the assumption

that the client is correct. Therefore, correct clients will not be removed by the client

suspicion protocol.

Claim 3 (Faulty Replica Condition). Faulty replicas cannot impede progress by

causing view changes.

Proof. To begin, we show that faulty replicas cannot cause a view change by sending

〈View-Change〉 messages. At least f + 1 〈View-Change〉 messages are sufficient to

cause a view change. Thus, even if all faulty replicas vote for view change, they

cannot cause a view change. A faulty primary can cause a view change. However,

the primary cannot be faulty for more than f consecutive views.

In addition, no 〈View-Change〉 message makes a correct primary incapable of

generating a 〈New-View〉 message. A correct primary is able to pick up a stable

checkpoint. Since at least f + 1 correct replicas have CER2 for a checkpoint, the

new primary is able to pick it up. In addition, the new primary is able to pick up

43

a sequence of requests based on condition A or B. Either some correct replica(s)

commits on a checkpoint or no correct replica does. Condition A1 can be verified

because non-faulty replicas will not commit on two different checkpoints. Condition

A2 is satisfied if at least one correct replica accepts a 〈Checkpoint-I〉 message for the

same checkpoint and it votes for the authenticity of the checkpoint. Therefore, the

checkpoint can be selected since it is authentic. Similarly, a set of executed requests

can be selected based on R in a view change. Namely, if the client completes a

request, the request must be accepted by at least 2f + 1 replicas. Among them,

at least f + 1 replicas are correct. If other replicas receive inconsistent 〈Prepare〉

messages and f +1 〈Commit〉 messages, they will abort. Therefore, it is not possible

that a set of f + 1 replicas include one request and another set of f + 1 replicas

include another request. In conclusion, the new primary is able to select a 〈New-

View〉 message.

Claim 4 (Faulty Client Condition 2). A faulty client cannot impede progress by

causing view changes.

Proof. If a faulty client intentionally triggers the checkpoint subprotocol while repli-

cas are consistent, requests committed in agreement subprotocol will be committed

in checkpoint subprotocol. View changes will not occur. Since such faulty behavior

of clients will be detected, the client will be removed.

To summarize, according to Claim 2, correct replicas will not be removed, so

their requests can be handled. Faulty backups or faulty clients can not cause view

changes, as proven in Claim 3 and Claim 4 respectively. Since the primary cannot

be faulty for more than f continuous views, correct clients eventually receive replies

to their requests.

44

3.3 Discussion

3.3.1 Timeouts

Existing protocols rely on different timeouts to guarantee liveness. As discussed

in §3.2.4, the values of timeouts are key to avoid some uncivil attacks. Since we

assume the partial synchrony model, it is reasonable to set up timeouts according

to the round-trip time such as the technique used in Prime [5]. However, in several

corner cases, either inappropriate values of timeouts or network congestion can make

a correct replica suspect or remove a correct primary.

hBFT employs a client suspicion subprotocol that is used to detect faulty clients.

A faulty primary can play tricks on timeouts to remove correct clients. For in-

stance, the primary can send a 〈Prepare〉 message to f correct replicas and delay the

〈Prepare〉 message to f+1 correct replicas until the very end of timeout of the client.

The f + 1 correct replicas receive the 〈Prepare〉 message and execute the request but

they do not reply to the clients “on time.” Since the client does not receive enough

number of replies before the timeout expires, it sends a 〈PANIC〉 message. However,

all replicas are “consistent” since the primary still sends out consistent 〈Prepare〉

messages. Correct clients will be suspected.

We solve this problem by using Almost-MAC-agreement protocol as discussed

in §3.2.4. The optimization allows all replicas to execute the request on time if at

least one correct replica receives a valid 〈Prepare〉 message, which prevents a faulty

primary from framing the clients.

45

3.3.2 Speculation

Speculation reduces the cost and simplifies the design of Byzantine agreement proto-

cols, which works well especially for systems with highly concurrent requests. Spec-

ulation has been used by fault-free systems and by systems that tolerate crash fail-

ures. Therefore, hBFT also works well in adaptively tolerating crash failures to

Byzantine failures. hBFT uses speculation because replicas are always consistent

for both fault-free and normal cases where the primary is correct. Every request

takes three communication steps to complete, and is the theoretical lower bound for

agreement-based protocols.

Speculation does not work well for systems that have high computationally in-

tensive tasks or systems that have a high attack rate. The former problem can be

handled by separating execution from agreement [117]. The latter problem decreases

the performance either with or without recovery. For instance, faulty clients can

simply trigger the three-phase checkpoint subprotocol on every request, which gives

hBFT similar performance to PBFT before the faulty clients are removed. The

advantage of hBFT, as shown in §3.4, shows that the three-phase checkpoint sub-

protocol is rarely triggered. Therefore, hBFT improves the performance in fault-free

and normal cases but achieves comparable performance to PBFT in the worst case.

3.4 Evaluation

We evaluated the system on Emulab [114] utilizing up to 45 pc3000 machines con-

nected through a 100Mbps switched LAN. Each machines is equipped with a 2GHz,

64-bit Xeon processor with 2GB of RAM. 64-bit Ubuntu 10 is installed on every ma-

chine, running Linux kernel 2.6.32. We used RSA-FDH [9] for our digital signature

46

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50

T
h

ro
u

g
h

p
u

t
(K

o
p

s
/s

e
c
)

Number of clients

Throughput vs. Number of clients

PBFT(B=1)
PBFT(B=10)

Zyzzyva(B=1)
Zyzzyva(B=10)

hBFT(B=1)
hBFT(B=10)

Figure 3.4. Throughput for the 0/0 benchmark as the number of clients varies for
systems to tolerate f = 1 faults.

scheme, and HMAC-MD5 [10,11] for the MAC algorithm.

We compare our work with Castro et al.’s implementation of PBFT [18] as well

as Kotla et al.’s implementation of Zyzzyva [69]. All the experiments are carried

out in normal cases, where a backup is faulty. Four micro-benchmarks are used in

the evaluation, also developed by Castro et-al. An x/y benchmark refers to an xkB

request from clients and an ykB reply from the replicas.

3.4.1 Throughput

Fig. 3.4 compares throughput achieved for the 0/0 benchmark in normal cases be-

tween PBFT, Zyzzyva and hBFT where B is the size of the batch. Fig. 3.5 presents

the performance for the four benchmarks where B = 1 for all benchmarks. All the

experiments are tested in the configuration of f = 1.

47

 0

 10

 20

 30

 40

 50

0/0
0/4

4/0
4/4

T
h

ro
u

g
h

p
u

t(
o

p
s
/s

e
c
)

Throughput for 0/0, 0/4, 4/0, 4/4 benchmarks

Read-Only
hBFT
PBFT

Zyzzyva

Figure 3.5. Throughput for 0/0, 0/4, 4/0 and 4/4 benchmarks for systems to
tolerate f = 1 faults.

As the number of clients increases, Zyzzyva performs even worse than PBFT. As

indicated in §3.1.1, without batching (B = 1, f = 1), bottleneck server of Zyzzyva (4+

5f + 3f
b

) performs 1.2 times more MAC operations than PBFT (2+ 8f
b

) and 2.4 times

more MAC operations than hBFT (2+ 3f
b

). With batching (B = 10, f = 1), Zyzzyva

performs 3.3 times more MAC operations than PBFT and 4.0 times more MAC op-

erations than hBFT.

The simulation validates the theoretical results. As shown in Fig. 3.4, without

batching, hBFT achieves more than 40% higher throughput than PBFT and 20%

higher throughput than Zyzzyva. With batching, the peak throughput of hBFT is 2

times better than that of Zyzzyva, and 40% higher than that of PBFT. The difference

is due to the cryptographic overhead of each protocol.

Additionally, hBFT outperforms both Zyzzyva and PBFT under high concur-

48

rency. As the number of clients grows, all three protocols achieve better performance

with batching than without. When the number of clients exceeds 40, throughput of

Zyzzyva degrades obviously. All other cases remain stable when the number of clients

exceeds 30. When the number of clients is fewer than 30, hBFT with batching has

an outstanding growth. Other than that, throughput of PBFT with batching also

grows faster compared with all the left cases. The reply message cannot be batched

and replicas need to reply to every client, which explains the result why Zyzzyva

achieves the lowest throughput in normal cases.

Fig. 3.5 presents the throughput of protocols without batching with 10 clients.

For all the benchmarks, hBFT achieves higher throughput as well. All three protocols

achieve the best throughput for 0/0 benchmark and the worst for 4/4 benchmark.

Zyzzyva and hBFT perform worse for 0/4 and 4/4 benchmarks than 4/0 benchmark.

PBFT achieves almost the same throughput for 0/4 and 4/0 benchmarks. This im-

plies that the size of reply messages has more effect for speculation-based protocols.

The outstanding performance of read-only requests is due to the read-only optimiza-

tion, where replicas send reply directly to the clients without running agreement

protocol.

To summarize this section, hBFT outperforms both Zyzzyva and PBFT in normal

cases. Since PBFT achieves almost the same throughput for 0/4 and 4/0 benchmarks

and it achieves higher throughput with batching, it works well for systems that have

more computationally consuming tasks. Comparably, hBFT and Zyzzyva work well

for systems that have highly concurrent but lightweight requests.

49

 0

 1

 2

 3

 4

 5

 6

 7

 0 10 20 30 40 50

L
a

te
n

c
y
(m

s
)

Number of clients

Latency vs. Number of clients

PBFT(B=1)
PBFT(B=10)

Zyzzyva(B=1)
Zyzzyva(B=10)

hBFT(B=1)
hBFT(B=10)

Figure 3.6. Latency for the 0/0 benchmark as the number of clients varies for
systems to tolerate f = 1 faults.

3.4.2 Latency

The performance depends on both cryptographic overhead and one way message

latencies. Cryptographic overhead controls the latency of processing one message and

the number of one way latencies controls the number of phases that the agreement

protocol goes through. In terms of critical paths between sending and completing

a request, PBFT has four if replicas send reply to the clients after prepare phase.

hBFT has only three, which is the theoretical lower bound of agreement protocols.

Even though the checkpoint subprotocol takes three phases in contrast to two in

other protocols, it will not decrease the overall performance significantly since the

checkpoint subprotocol is triggered rarely. Zyzzyva takes three in fault-free cases

and five in normal cases.

Additionally, the performance of all protocols is also related to the frequency of

50

 0

 0.2

 0.4

 0.6

 0.8

 1

0/0
0/4

4/0
4/4

L
a

te
n

c
y
(m

s
)

Latency for 0/0, 0/4, 4/0, 4/4 benchmarks

Read-Only
hBFT

Zyzzyva
PBFT

Figure 3.7. Latency for 0/0, 0/4, 4/0 and 4/4 benchmarks for systems to tolerate
f = 1 faults without contention.

checkpoint subprotocol as well. It has a direct impact on hBFT due to the reason that

checkpoint subprotocol of hBFT is more expensive than the other two. By default, we

assume that a checkpoint subprotocol starts every 1000 requests or batches. hBFT

outperforms the other two under this setting. If we make checkpoint subprotocol

more rarely, it can be expected that hBFT will achieve even better performance and

vice versa.

As illustrated in Fig. 3.6 and Fig. 3.7, without batching, hBFT achieves 40%

lower latency than that of PBFT and 30% lower latency than that of Zyzzyva.

With batching, similar with the performance of throughput, Zyzzyva achieves higher

latency than that of PBFT, and hBFT outperforms both. When the number of

clients increases, all the protocols scale well without an obvious increase in latency,

which shows that all three protocols work well under high concurrency. When the

51

number of clients exceeds 40 and with batching, Zyzzyva has an increase of latency.

Since every 〈Reply〉message in Zyzzyva contains 3f+1 MACs and cannot be batched,

the increase in latency indicates that the cryptographic operations in the 〈Reply〉

message limits the behavior of a protocol.

The performance for all the four benchmarks shows similar results as indicated in

Fig. 3.7. All the three protocols have the lowest latency for 0/0 benchmark and the

highest for 4/4 benchmark. hBFT and PBFT achieve almost the same latency for

both 4/0 and 0/4 benchmarks. Zyzzyva achieves lower latency for 4/0 benchmark

than 0/4 benchmark. The length of reply message also reduces the latency per

request for Zyzzyva. The effect is not as apparent as the effect on throughput though.

Although hBFT performs better on throughput for the 4/0 benchmark than the 0/4

benchmark, it achieves almost the same latency for both benchmarks, which indicates

that the checkpoint subprotocol has a more direct effect on the throughput than the

latency.

Overall, the latency validates the results of throughput. Our statements in §3.4.1

are verified by the results of latency. By observing the curves of latency, we can

summarize the performance of protocols under normal operations. On the other

hand, by observing the curves of throughput, the effects of other subprotocols are

included.

3.4.3 Fault Scalability

The latency depends on both cryptographic overhead and one-way latencies. One-

way latencies refers to the communication step between the beginning of a request

to the receipt of the reply message. Cryptographic overhead controls the latency of

processing one message and the number of one-way latencies controls the number of

52

phases that the agreement protocol goes through. In terms of critical paths, PBFT

has four if replicas send reply to the clients after prepare phase. hBFT has only three,

which is the theoretical lower bound of agreement protocols under high concurrency.

Even though the checkpoint subprotocol takes three phases, it will not decrease the

overall performance significantly since the checkpoint subprotocol is triggered rarely.

Zyzzyva takes three in fault-free cases and five in normal cases.

Additionally, the performance of all protocols is also related to the frequency of

checkpoint subprotocol as well. It has a direct impact on hBFT due to the reason

that checkpoint subprotocol of hBFT is more expensive than PBFT and Zyzzyva. By

default, we assume that a checkpoint subprotocol starts every 128 requests. hBFT

outperforms the other two under this setting. If we use checkpoint subprotocol more

rarely, it can be expected that hBFT will achieve even better performance and vice

versa.

We assess the latency without contention when there is only 1 client. The perfor-

mance for all four benchmarks are similar, as shown in Fig. 3.7. All three protocols

have the lowest latency for the 0/0 benchmark and the highest for the 4/4 benchmark.

PBFT achieves almost the same latency for both 4/0 and 0/4 benchmarks. hBFT

and Zyzzyva achieve lower latency for the 4/0 benchmark than the 0/4 benchmark.

As shown in Fig. 3.7, we also evaluate latency as the number of clients grows.

We observe that without batching, hBFT achieves an average of 30% lower latency

than PBFT and 40% lower latency than Zyzzyva. With batching, hBFT achieves an

average of 15% lower latency than PBFT and 35% lower latency than Zyzzyva. When

the number of clients increases, the latency of all the protocols increase gradually,

which shows that all three protocols work well under high concurrency. The latency

of Zyzzyva grows faster than the other two.

We also examine performance when the number of replicas increases. As shown

53

in Fig. 7.2, the throughput is related to f . We view the primary as the bottleneck

server not only because of the number of MAC operations in the agreement, but

also because of other effort such as processing requests. For PBFT and hBFT, the

backups do not perform many fewer cryptographic operations than the primary. In

comparison, backups in Zyzzyva perform many fewer cryptographic operations than

the primary, which can be viewed as an advantage over the other two. However,

this does not have a direct positive effect on the throughput and latency since the

primary performs more cryptographic operations. As f increases, the performance

for all three protocols will decrease due to the cryptographic overhead, especially

without batching.

Fig. 3.8 compares the number of cryptographic operations that the primary and

clients perform in normal cases as the number of faults increases. In addition to

PBFT, Zyzzyva and hBFT, we also include Q/U and HQ, which are two (hybrid)

Byzantine quorum protocols. For the performance of a primary with or without

batching, as illustrated in Fig. 3.8(a) and Fig. 3.8(b), it can be observed that batch-

ing greatly reduces the number of cryptographic operations as the number of total

replicas increases. For instance, although the number of cryptographic operations of

PBFT is high without batching and increases quite fast, the cryptographic overhead

is almost the smallest without batching and remains stable as the number of faults

increases. Comparably, the number of cryptographic operations of Zyzzyva does not

decrease too much without batching. Since both HQ and Q/U are quorum-based

protocols, they cannot use batching and work better under low concurrency. hBFT

achieves the smallest numbers with or without batching.

As illustrated in Fig. 3.9, as the number of replicas increases, the latency of PBFT

increases quickly without batching. With batching, PBFT achieves a more stable

curve. Zyzzyva has higher latency than the other two protocols for each case. On the

54

other hand, the latency of hBFT stabilizes and does not grow to a large degree with

or without batching. The key factors in the performance are not only the critical

paths and the number of cryptographic operations, but also the message complexity.

Although Zyzzyva has higher cryptographic overhead, it requires the same number

of messages as hBFT, explaining why both scale better than PBFT.

Not surprisingly, as shown in Fig. 3.10, the throughput shows a similar trend

with latency. As the system scales, when f is greater than 2, throughput of Zyzzyva

obviously decreases, especially without batching. Zyzzyva scales better than PBFT

but the performance degrades obviously when f is greater than 4. hBFT scales better

than both Zyzzyva and PBFT with or without batching. The difference between the

numbers of cryptographic operations is still the key to the overall performance. When

the number of faults is 5 and assuming b equals 10, PBFT requires 42 MACs without

batching and only 6 with batching, Zyzzyva requires 44 MACs without batching and

30.5 with batching, and hBFT requires 17 MACs without batching and 3.5 with

batching. For systems with high concurrency, PBFT and hBFT are preferred and

scale well as the number of faults increases.

3.4.4 A BFT Network File System

This section describes our evaluation of a BFT-NFS service implemented using

PBFT [18], Zyzzyva [69], and hBFT, respectively. Similarly, in the NFS service,

we evaluate the performance of normal cases where a backup server fails.

The NFS service exports a file system, which can then be mounted on a client

machine. The replication library and the NFS daemon are called to reach agreement

in the order that replicas receive client requests. Once processing is done, replies

are sent to the clients. The NFS daemon is implemented using a fixed-size memory-

55

mapped file.

We use the Bonnie++ benchmark [30] to compare our three implementations with

NFS-std, an unreplicated NFS V3 implementation, using an I/O intensive workload.

The Bonnie++ benchmark includes sequential input (including per-character and

block file reading), sequential output (including per-character and block file writing),

and the following directory operations (DirOps): (1) create files in numeric order;

(2) stat() files in the same order; (3) delete them in the same order; (4) create files in

an order that appears random to the file system; (5) stat() random files; (6) delete

the files in random order.

We evaluate the performance when a failure occurs at time zero, as detailed

in Fig. 3.11. In addition, up to 20 clients run Bonnie++ benchmark concurrently.

The results show that hBFT completes every type of operations with lower latency

than all of other protocols. The main difference lies on the write operations. This is

due to the fact that all the three protocols use read-only optimization, where replicas

send reply messages to the clients directly without running the agreement protocol.

Compared with NFS-std, hBFT only causes 6% overhead while PBFT and Zyzzyva

cause 10% and 18% overhead, respectively.

3.5 Conclusion

In this chapter, we presented hBFT, a hybrid, Byzantine fault-tolerant, replicated

state machine protocol with optimal resilience. By re-exploiting speculation, as well a

requiring the participation of clients, the theoretical lower bound for throughput and

latency have been achieved for both fault-free and normal cases in hBFT. hBFT is a

fast protocol that moves some jobs to the clients but can still tolerate faulty clients.

We have also proven the safety and liveness properties of hBFT and demonstrated

56

how hBFT improves on the performance of existing protocols without several of the

trade-offs.

57

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5

C
ry

p
to

g
ra

p
h
ic

 O
p
e
ra

ti
o
n
 p

e
r

R
e
q
u
e
s
t

Faults Tolerated

Bottleneck Server Cryptographic Operations With b=1

PBFT

Q/U

HQ

Zyzzyva

hBFT

(a) Bottleneck server, b = 1

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5

C
ry

p
to

g
ra

p
h
ic

 O
p
e
ra

ti
o
n
 p

e
r

R
e
q
u
e
s
t

Faults Tolerated

Bottleneck Server Cryptographic Operations With b=10

PBFT

Q/U

HQ

Zyzzyva

hBFT

(b) Bottleneck server, b = 10

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5

C
ry

p
to

g
ra

p
h
ic

 O
p
e
ra

ti
o
n
 p

e
r

R
e
q
u
e
s
t

Faults Tolerated

Clients Cryptographic Operations

PBFT

Q/U

HQ

Zyzzyva

hBFT

(c) Client

Figure 3.8. Fault scalability using analytical model.

58

 0

 1

 2

 3

 4

 5

 6

 7

 8

f=1
f=2

f=3
f=4

f=5

L
a

te
n

c
y
(m

s
)

Fault Scalability: Latency

hBFT(B=1)
hBFT(B=10)
PBFT(B=1)

PBFT(B=10)
Zyzzyva(B=1)

Zyzzyva(B=10)

Figure 3.9. Fault scalability: latency.

 0

 20

 40

 60

 80

 100

 120

 1 1.5 2 2.5 3 3.5 4 4.5 5

T
h

ro
u

g
h

p
u

t
(K

o
p

s
/s

e
c
)

Number of faults

Fault-Scalability: Throughput

PBFT(B=1)
PBFT(B=10)

hBFT(B=1)
hBFT(B=10)

Zyzzyva(B=1)
Zyzzyva(B=10)

Figure 3.10. Fault scalability: throughput.

59

0 20 40 60 80 100 120 140 time(s)

NFS-std

hBFT

Zyzzyva

PBFT

4
3

2
1

Write(char) Write(block) Read(char) Read(block) DirOps

Figure 3.11. NFS evaluation with the Bonnie++ benchmark.

60

Chapter 4

BChain: Byzantine Replication

with High Throughput and

Embedded Reconfiguration

The work presented in this chapter was first described in an earlier paper by Duan,

et al. [39]. We describe the design and implementation of BChain, a Byzantine fault-

tolerant state machine replication protocol, which performs comparably to other

modern protocols in fault-free cases, but in the face of failures can also quickly re-

cover its steady state performance. Building on chain replication, BChain achieves

high throughput and low latency under high client load. At the core of BChain is an

efficient Byzantine failure detection mechanism called re-chaining , where faulty repli-

cas are placed out of harm’s way at the end of the chain, until they can be replaced.

We provide a number of optimizations and extensions and also take measures to

make BChain more resilient to certain performance attacks. Our experimental eval-

uation, using both micro-benchmarks and an NFS service, confirms our performance

expectations for both fault-free and failure scenarios.

61

4.1 Introduction

There are two broad classes of BFT protocols that have evolved in the past decade:

broadcast-based [2, 18, 34, 69] and chain-based protocols [50, 107]. The main differ-

ence between these two classes is their performance characteristics. Chain-based

protocols are aimed at achieving high throughput, at the expense of higher latency.

However, as the number of concurrent client requests grows, it turns out that chain

replication protocols can actually achieve lower latency than broadcast-based proto-

cols. The downside however, is that chain protocols are less resilient to failures, and

typically resort to broadcasting when failures are present. This results in a significant

performance degradation.

In this chapter we propose BChain, a fully-fledged BFT protocol addressing the

performance issues observed when a BFT service experiences failures. Our evaluation

shows that BChain can quickly recover its steady state performance, while Aliph-

Chain [50] and Zyzzyva [69] experience significantly reduced performance, when sub-

jected to a simple crash failure. At the same time, the steady state performance of

BChain is comparable to Aliph-Chain, the state-of-the-art chain-based BFT proto-

col. BChain also outperforms broadcast-based protocols PBFT [18] and Zyzzyva

with a throughput improvement of up to 50 % and 25 %, respectively. We used

BChain to implement a BFT-based NFS service, and our evaluation shows that it is

only marginally slower (1%) than a standard NFS implementation.

BChain in a nutshell. BChain is a self-recovering, chain-based BFT protocol,

where the replicas are organized in a chain. In common case executions, clients send

their requests to the head of the chain, who orders the requests. The ordered requests

are forwarded along the chain and executed by the replicas. Once a request reaches

a replica that we call the proxy tail, a reply is sent to the client.

62

When a BFT service experiences failures or asynchrony, BChain employs a novel

approach that we call re-chaining. In this approach, the head reorders the chain

when a replica is suspected to be faulty, so that a fault cannot affect the critical

path.

To facilitate re-chaining, BChain makes use of a novel failure detection mecha-

nism, where any replica can suspect its successor and only its successor. A replica

does this by sending a signed suspicion message up the chain. No proof that the

suspected replica has misbehaved is required. Upon receiving a suspicion, the head

issues a new chain ordering where the accused replica is moved out of the critical

path, and the accuser is moved to a position in which it cannot continue to accuse

others. In this way, correct replicas help BChain make progress by suspecting faulty

replicas, yet malicious replicas cannot constantly accuse correct replicas of being

faulty.

Our re-chaining approach is inexpensive; a single re-chaining request corresponds

to processing a single client request. Thus, the steady state performance of BChain

can almost be maintained. The latency reduction caused by re-chaining is dominated

by the failure detection timeout.

Our Contributions in Context. We consider two variants of BChain—BChain-3

and BChain-5, both tolerating f failures. BChain-3 requires 3f + 1 replicas and a

reconfiguration mechanism coupled with our detection and re-chaining algorithms,

while BChain-5 requires 5f + 1 replicas, but can operate without the reconfiguration

mechanism. We compare BChain-3 and BChain-5 with state-of-the-art BFT proto-

cols in Table 7.2. All protocols use MACs for authentication and request batching

with batch size b. The number of MAC operations for BChain at the bottleneck

server tends to one for gracious executions. While this is also the case for Aliph-

Chain [50], Aliph requires that clients take responsibility for switching to a different,

63

stronger, and slower BFT protocol in the presence of failures, to ensure safety and

liveness. Thus, a single dedicated adversary might render the system much slower.

Shuttle [107] can tolerate f faulty replicas using only 2f + 1 replicas. However, it

relies on a trusted auxiliary server. BChain does not require an auxiliary service, yet

its critical path of 2f + 2 is identical to that of Shuttle.

Our contributions can be summarized as follows:

• We present BChain-3 and its sub-protocols for re-chaining, reconfiguration,

and view change (§4.2). Re-chaining is a novel technique to ensure liveness

in BChain. Together with re-chaining, the reconfiguration protocol can re-

place failed replicas with new ones, outside the critical path. The view change

protocol deals with a faulty head.

• BChain-5 and how it can operate without reconfiguration (§4.3).

• We also describe a number of optimizations and extensions in §4.4, including

a special case of BChain-3, which does not require reconfiguration to achieve

liveness.

• In §4.5 we evaluate the performance of BChain for both gracious and uncivil

executions under different workloads, and compare it with other BFT proto-

cols. We also ran experiments with a BFT-NFS application and assessed its

performance compared to the other relevant BFT protocols.

4.2 BChain-3

We now describe the main protocols and principles of BChain. Our description here

uses digital signatures; later we show how they can be replaced with MACs, along

with other optimizations. BChain-3 has five sub-protocols: (1) chaining, (2) re-

chaining, (3) view change, (4) checkpoint, and (5) reconfiguration. The chaining

64

protocol orders clients requests, while re-chaining reorganizes the chain in response

to failure suspicions. Faulty replicas are moved to the end of the chain. The view

change protocol selects a new head when the current head is faulty, or the system

is slow. Our checkpoint protocol is similar to that of PBFT [18] and hBFT work

described in Chapter 3. It is used to bound the growth of message logs and reduce

the cost of view changes. We do not describe it in this chapter. The reconfiguration

protocol is responsible for reconfiguring faulty replicas.

To tolerate f failures, BChain-3 needs n replicas such that f ≤ bn−1
3
c. In the

following, we assume n = 3f + 1, but it can be extended to cases where n > 3f + 1

holds.

4.2.1 Conventions and Notations

Our system can mask up to f faulty replicas, using n replicas. We write t, where

t ≤ f , to denote the number of faulty replicas that the system currently has. A

computationally bounded adversary can coordinate faulty replicas to compromise

safety only if more than f replicas are compromised.

In this chapter, the signature of a message m signed by replica pi is denoted 〈m〉pi .

We say that a signature is valid on message m, if it passes the verification with regard

to the public-key of the signer and the message. A vector of signatures of message

m signed by a set of replicas U = {pi, . . . , pj} is denoted 〈m〉U .

In BChain, the replicas are organized in a metaphorical chain, as shown in

Fig. 4.1. Each replica is uniquely identified from a set Π = {p1, p2, · · · , pn}. Ini-

tially, we assume that replica IDs are numbered in ascending order. The first replica

is called the head, denoted ph, the last replica is called the tail, and the (2f + 1)th

replica is called the proxy tail, denoted pp. We divide the replicas into two subsets.

65

Given a specific chain order, A contains the first 2f + 1 replicas, initially p1 to p2f+1.

B contains the last f replicas in the chain, initially p2f+2 to p3f+1. For convenience,

we also define A6p = {A\ pp}, excluding the proxy tail, and A6h = {A\ ph}, excluding

the head.

1 2 2f+1 2f+2

head proxy tail tail
2f 3f+1

: 2f+1 replicas : f replicas

Figure 4.1. BChain-3. Replicas are organized in a chain.

The chain order is maintained by every replica and can be changed the head and is

communicated to replicas through message transmissions.1 For any replica except

the head, pi ∈ A6h, we define its predecessor
↼

pi, initially pi−1, as its preceding replica

in the current chain order. For any replica except the proxy tail, pi ∈ A6p, we define

its successor
⇀

pi, initially pi+1, as its subsequent replica in the current chain order.

For each pi ∈ A, we define its predecessor set P(pi) and successor set S(pi),

whose elements depend on their individual positions in the chain. If a replica pi 6= ph

is one of the first f + 1 replicas, its predecessor set P(pi) consists of all the preceding

replicas in the chain. For every other replica in A, the predecessor set P(pi) consists

of the preceding f + 1 replicas in the chain. If pi is one of the last f + 1 replicas

in A, the successor set S(pi) consists of all the subsequent replicas in A. For every

other replica in A, the successor set S(pi) consists of the subsequent f + 1 replicas.

Note that the cardinality of any replica’s predecessor set or successor set is at

most f + 1.

1This is in contrast to Aliph-Chain, where the chain order is fixed and known to all replicas and
clients beforehand.

66

4.2.2 Protocol Overview

In a gracious execution, as shown in Fig. 4.2, the first 2f+1 replicas (set A) reach an

agreement while the last f replicas (set B) correspondingly update their states based

on the agreed-upon requests from set A. BChain transmits two types of messages

along the chain: 〈Chain〉 messages transmitted from the head to the proxy tail, and

〈Ack〉 messages transmitted in reverse from the proxy tail to the head. A request is

executed after a replica accepts the 〈Chain〉 message; a request commits at a replica

if it accepts the 〈Ack〉 message.

Upon receiving a client request, the head sends a 〈Chain〉 message representing

the request to its successor. As soon as the proxy tail accepts the 〈Chain〉 message, it

sends a reply to the client and generates an 〈Ack〉 message, which is sent backwards

along the chain until it reaches the head. Once a replica in A accepts the 〈Ack〉

message, it completes the request and forwards its 〈Chain〉 message to replicas in B

to ensure that the message is committed at all the replicas.

To handle failures and ensure liveness, BChain incorporates failure detection and

re-chaining protocol that works as follows: Every replica in A6p starts a timer after

sending a 〈Chain〉 message. Unless an 〈Ack〉 is received before the timer expires, it

sends a 〈Suspect〉 message to the head and also along the chain towards the head.

Upon seeing 〈Suspect〉 messages, the head starts the re-chaining, by moving faulty

replicas to set B where, if needed, replicas may be replaced in the reconfiguration

protocol. In this way, BChain remains robust until new failures occur.

4.2.3 Chaining

We now describe the sequence of steps of the chaining protocol, used to order re-

quests, when there are no failures.

67

client
(head) p

p
(proxy tail) p

(tail) p

0

1

2

3

!REPLY"

!ACK"

!CHAIN"

!CHAIN"

!CHAIN"

!REQUEST"

!ACK"

!CHAIN"
!CHAIN"

Figure 4.2. BChain-3 common case communication pattern. (This and subsequent
pictures are best viewed in color.) All the signatures can be replaced with MACs.
All the 〈Chain〉 and 〈Ack〉 messages can be batched. The 〈Chain〉 messages
with dotted, blue lines are the forwarded messages that are stored in logs. No
conventional broadcast is used at any point in our protocol. For a given batch
size b, the number of MAC operations at the bottleneck server (i.e., the proxy
tail) is 1 + 3f+2

b .

Step 1: Client sends a request to the head.

A client c requests the execution of state machine operation o by sending a request

m =〈Request, o, T, c〉c to the replica that it believes to be the head, where T is the

timestamp.

Step 2: Assign sequence number and send chain message.

When the head ph receives a valid 〈Request, o, T, c〉c message, it assigns a sequence

number and sends message 〈Chain, v, ch,N,m, c,H, R,Λ〉ph to its successor, where v

is the view number, ch is the number of re-chainings that took place during view v,

H is the hash of its execution history, R is the hash of the reply r to the client

containing the execution result, and Λ is the current chain order. Both of H and R

are empty in this step.

Step 3: Execute request and send chain message.

A valid 〈Chain, v, ch,N,m, c,H, R,Λ〉P(pj) message is sent to replica pj by its prede-

cessor, which contains valid signatures by replicas in P(pj). The replica pj updates

H and R fields if necessary, appends its signature to the 〈Chain〉 message, and sends

to its successor. Note that the H and R fields are empty if pj is among the first f

replicas, and both H and R must be verified before proceeding.

68

Each time a replica pj ∈ A 6p sends a 〈Chain〉 message, it sets a timer, expecting

an 〈Ack〉 message, or a 〈Suspect〉 message signaling some replica failures.

Step 4: Proxy tail sends reply to the client and commits the request.

If the proxy tail pj accepts a 〈Chain〉 message, it computes its own signature and

sends the client the reply r, along with the 〈Chain〉 message it accepts. It also sends

an 〈Ack, v, ch,N,D(m), c〉pj message to its predecessor. In addition, it forwards

the corresponding 〈Chain, v, ch,N,m, c,H, R,Λ〉pj message to all replicas in B. The

request commits at the proxy tail.

Step 5: Client completes the request or retransmits.

The client completes the request if it receives 〈Reply〉 message from the proxy tail

with signatures by the last f + 1 replicas in the chain. Otherwise, it retransmits the

request to all replicas.

Step 6: Other replicas in A commit the request.

A valid 〈Ack, v, ch,N,D(m), c〉S(pj) message is sent to replica pj by its successor,

which contains valid signatures by replicas in S(pj). The replica appends its own

signature and sends to its predecessor.

Step 7: Replicas in B execute and commit request.

The replicas in B collects f + 1 matching 〈Chain〉 messages, and executes the op-

eration, completing the current round. Thus, the request commits at each correct

replica in B.

4.2.4 Re-chaining

To facilitate failure detection and ensure that BChain remains live, we introduce a

protocol we call re-chaining. With re-chaining, we can make progress with a bounded

number of failures, despite incorrect suspicions, in a partially synchronous environ-

69

Algorithm 4 Failure detector at replica pi
1: upon 〈Chain〉 sent by pi

2: starttimer(∆1,pi)

3: upon 〈Timeout,∆1,pi〉 {Accuser pi}

4: send 〈Suspect,
⇀

pi,m, ch, v〉pi to
↼

pi and ph

5: upon 〈Ack〉 from
⇀

pi

6: canceltimer(∆1,pi)

7: upon [Suspect, py,m, ch, v] from
⇀

pi

8: forward [Suspect, py,m, ch, v] to
↼

pi

9: canceltimer(∆1,pi)

ment. The algorithm ensures that eventually all the faulty replicas be identified

and appropriately dealt with. The strategy of the re-chaining algorithm is to move

replicas that are suspected to set B, where if deemed necessary, they are rejuvenated.

BChain failure detector. The objective of the BChain failure detector is to iden-

tify faulty replicas, and issue a new chain configuration and to ensure that progress

can be made. It is implemented as a timer on 〈Chain〉 messages, as shown in

Algorithm 4. On sending a 〈Chain〉 message m, replica pi starts a timer, ∆1,pi .

If the replica receives an 〈Ack〉 for the message before the timer expires, it cancels

the timer and starts a new one for the next request in the queue, if any. Otherwise, it

sends both the head and its predecessor a 〈Suspect,
⇀

pi,m, ch, v〉t o signal the failure

of its successor. Moreover, if pi receives a 〈Suspect〉 message from its successor, the

message is forwarded to pi’s predecessor, along the chain until it reaches the head.

To prevent that a faulty replica fails to forward the 〈Suspect〉 message, it is also

sent directly to the head. Passing it along the chain allows us to cancel timers and

70

reduce the number of suspect messages.

Let pi be the accuser ; then the accused can only be its successor,
⇀

pi. This is

ensured by having the accuser sign the 〈Suspect〉 message, just as an 〈Ack〉 message.

On receiving a 〈Suspect〉, the head starts re-chaining via a new 〈Chain〉 message.

If the head receives multiple 〈Suspect〉 messages, only the one closest to the proxy

tail is handled. Handling a 〈Suspect〉 message is done by increasing ch, selecting a

new chain order Λ, and sending a 〈Chain〉 message to order the same request again.

Re-chaining algorithms. We provide two re-chaining algorithms for BChain-3,

Algorithm 5 and 6. To explain these algorithms, assume that the head, ph, has

received a 〈Suspect〉 message from a replica px suspecting is successor py. Let pz be

the first replica in set B. Both algorithms show how the head selects a new chain

order. Both are efficient in the sense that the number of re-chainings needed is

proportional to the number of existing failures t instead of the maximum number f .

We levy no assumptions on how failures are distributed in the chain.

Re-chaining-I—crash failures handled first. Algorithm 5 is reasonably efficient; in

the worst case, t faulty replicas can be removed with at most 3t re-chainings. More

specifically, if the head is correct and 3t≤f , the faulty replicas are moved to the end of

chain after at most 3t re-chainings; if 3t>f , at most 3t re-chainings are necessary and

at most 3t−f replicas are replaced in the reconfiguration protocol (§4.2.6), assuming

that any individual replica can be reconfigured within f re-chainings. Algorithm 5

is even more efficient when handling timing and omission failures, with one such

replica being removed using only one re-chaining. Despite the succinct algorithm,

the proof of the correctness for the general case is complicated [39]. To help grasp

the underlying idea, consider the following simple examples.

B Example (1): In Figure 4.3, replica p4 has a timing failure. This causes p3 to

71

Algorithm 5 BChain-3 Re-chaining-I
1: upon [Suspect, py,m, ch, v] from px {At the head, ph}

2: if px 6= ph then {px is not the head}

3: pz is put to the 2nd position {pz = B[1]}

4: px is put to the (2f + 1)th position

5: py is put to the end

send a 〈Suspect〉 message up the chain to accuse p4. According to our re-chaining

algorithm, p3 is moved to the (2f + 1)th position and becomes the proxy tail, and

p4 is moved to the end of the chain and becomes the tail. Our fundamental design

principle is that timing failures should be given top priority.

〈SUSPECT〉

1 2 4 2f+1 3f+1

head proxy tail tail

timeout!

2f+23

(a) p2 generates a 〈Suspect〉 message to accuse p3

1 2f+2 3 3f+1

head proxy tail reconfiguration

42

(b) p3 is moved to the tail

Figure 4.3. Example (1). A faulty replica is denoted by a double circle. After
the timer expires, replica p3 issues a 〈Suspect〉 message to accuse p4 (which is
faulty). The head moves p3 to the proxy tail position and the faulty replica p4 to
the end of the chain.

B Example (2): In Figure 4.4, p3 is the only faulty replica. We consider the cir-

cumstance where p3 sends the head a 〈Suspect〉 message to frame its successor p4

even if p4 follows the protocol. According to our re-chaining algorithm, replica p4

will be moved to the tail, while p3 becomes the new proxy tail. However, from then

72

on, p3 can no longer accuse any replicas. It either follows the specification of the

protocol, or chooses not to participate in the agreement, in which case p3 will be

moved to the tail. The example illustrates another important designing rationale

that an adversarial replica cannot constantly accuse correct replicas.

〈SUSPECT〉

1 2 3 2f+1 3f+1

head proxy tail tail

timeout!

2f+24

(a) p2 generates a 〈Suspect〉 message to maliciously accuse p3

〈SUSPECT〉

1 32f+1 3f+1

head proxy tail reconfiguration

timeout!

2f+2 4

(b) p2f+1 generates a 〈Suspect〉 message to accuse p2

1 2f+3 42f+1

head proxy tail reconfiguration

32f

(c) p2 is moved to the tail

Figure 4.4. Example (2). Replica p2 maliciously sends a 〈Suspect〉 message to
accuse p3. The head moves p2 to the proxy tail and p3 to the end of the chain.
If p2 does not behave, it will be accused by its predecessor p2f+1 such that in
another round of re-chaining p2 is moved to the end.

Re-chaining-II—improved efficiency. Algorithm 6 can provide improved efficiency

for the worst case. The underlying idea is simple. Every time the head receives

a 〈Suspect〉 message, both the accuser and the accused are moved to the end of

the chain. Algorithm 6 does not prioritize crash failures, and it relies on a stronger

reconfiguration assumption. If the head is correct and 2t ≤ f , the faulty replicas

are moved to the end of chain after at most 2t re-chainings; if 2t > f , at most 2t

73

re-chainings are necessary and at most 2t − f replica reconfigurations (§4.2.6) are

needed, assuming that any individual replica can be reconfigured within bf/2c re-

chainings. When an accused replica is moved to the end of chain, the reconfiguration

process is initialized, either offline or online. The replicas moved to the end of the

chain are all “tainted” and reconfigured, as we discuss in §4.2.6.

Algorithm 6 BChain-3 Re-chaining-II
1: upon [Suspect, py,m, ch, v] from px

2: if px 6= ph then {px is not the head}

3: px is put to the (3f)th position

4: py is put to the end

Timer setup. Existing BFT protocols typically only keep timers for view changes,

while BChain also requires timers for 〈Ack〉 and 〈Chain〉 messages. To achieve

accurate failure detection, we need different values for each of the timers for the

different replicas in the chain.

The timeout for each replica pi ∈ A is defined as ∆1,i = F(∆1, li), where F

is a fixed and efficiently computable function, ∆1 is the base timeout, and li is pi’s

location in the chain order. Note that for ph, we have that lh = 1 and thus F(∆1, 1) =

∆1. Correspondingly, for pp, we have that lp = 2f + 1 and F(∆1, 2f + 1) = 0. It

is reasonable to adopt a linear function with respect to the position of each replica

as the timer function. i.e., F(∆1, li) = 2f+1−li
2f

∆1. As an example, in the case of

n = 4 and f = 1, we set that ∆1,p1 = F(∆1, 1) = ∆1, ∆1,p2 = F(∆1, 2) = ∆1/2, and

∆1,p3 = F(∆1, 3) = 0.

To detect and deter misbehaving replicas that always delay requests to the upper

bound timeout value to increase system latency, we additionally verify the process-

ing delays in their average cases and allow to suspect those who frequently do so.

74

Concretely, each replica pi maintains an additional average latency ∆′1,pi such that

∆′1,pi < ∆1,pi , which is used to detect slow or faulty replicas mentioned above. A

replica suspect their successor in the following two cases: 1) The actual latency in

one round makes the average latency exceed α ∗∆′1,pi ; 2) The actual latency in one

round exceeds β ∗∆′1,pi . The first case prevents temporarily slow replicas from being

suspected. However, this case is allowed limited times and the timers will not be

adjusted accordingly. If non of the two cases is not true, the value of ∆1,pi is adjusted

according to ∆′1,pi .

4.2.5 View Change

The view change protocol has two functions: (1) to select a new head when the cur-

rent head is deemed faulty, and (2) to adjust the timers to ensure eventual progress,

despite deficient initial timer configuration.

A correct replica pi votes for view change if either (1) it suspects the head to be

faulty, or (2) it receives f + 1 〈ViewChange〉 messages. The replica votes for view

change and moves to a new view by sending all replicas a 〈ViewChange〉 message

that includes the new view number, the current chain order, a set of valid checkpoint

messages, and a set of requests that commit locally with proof of execution. For

each request that commits locally, if pi ∈ A, then a proof of execution for a request

contains a 〈Chain〉 message with signatures from P(pi) and an 〈Ack〉 message with

signatures from S(pi). Otherwise, a proof of execution contains f + 1 〈Chain〉 mes-

sages. Upon sending a 〈ViewChange〉 message, pi stops receiving messages except

〈Checkpoint〉, 〈NewView〉, or other 〈ViewChange〉 messages.

When the new head collects 2f + 1 〈ViewChange〉 messages, it sends all replicas

a 〈NewView〉 message which includes the new chain order in which the head of

75

the old view has been moved to the end of the chain, a set of valid 〈ViewChange〉

messages, and a set of 〈Chain〉 messages.

The other function of view change is to adjust the timers. In addition to the

timer ∆1 maintained for re-chaining, BChain has two timers for view changes, ∆2

and ∆3. ∆2 is a timer maintained for the current view v when a replica is waiting

for a request to be committed, while ∆3 is a timer for 〈NewView〉, when a replica

votes for a view change and waits for the 〈NewView〉. Algorithm 7 describes how

to initialize, maintain, and adjust these timers.

The view change timer ∆2 at a replica is set up for the first request in the queue.

A replica sends a 〈ViewChange〉 message to all replicas and votes for view change

if ∆2 expires or it receives f + 1 〈ViewChange〉 messages. In either case, when a

replica votes for view change, it cancels its timer ∆2.

After a replica collects 2f + 1 〈ViewChange〉 messages (including its own), it

starts a timer ∆3 and waits for the 〈NewView〉 message. If the replica does not

receive 〈NewView〉 message before ∆3 expires, it starts a new 〈ViewChange〉 and

updates ∆3 with a new value g3(∆3).

When a replica receives the 〈NewView〉 message, it sets ∆1 and ∆2 using g1(∆1)

and g2(∆2), respectively. In practice, the functions g1(·), g2(·), and g3(·) could simply

double the current timeouts.

To avoid the circumstance that the timeouts for ∆1 and ∆2 increase without

bound, we introduce upper bounds for both of them. Once either timer exceeds the

prescribed bound, the system starts reconfiguration.

76

Algorithm 7 View Change Handling and Timers at pi
1: ∆2 ← init∆2 ; ∆3 ← init∆3

2: voted← false

3: upon 〈Timeout,∆2〉

4: send 〈ViewChange〉

5: voted← true

6: upon f + 1 〈ViewChange〉 ∧ ¬voted

7: send 〈ViewChange〉

8: voted← true

9: canceltimer(∆2)

10: upon 2f + 1 〈ViewChange〉

11: starttimer(∆3)

12: upon 〈Timeout,∆3〉

13: ∆3 ← g3(∆3)

14: send new 〈ViewChange〉

15: upon 〈NewView〉

16: canceltimer(∆3)

17: ∆1 ← g1(∆1)

18: ∆2 ← g2(∆2)

4.2.6 Reconfiguration

Reconfiguration is a general technique, often abstracted as stopping the current state

machine and restarting it with a new set of replicas [77]. This does not preclude

77

reusing non-faulty replicas in a new configuration. Reconfiguration has traditionally

only been considered in the crash failure model. In this section, we describe a new

reconfiguration technique customized for our BChain protocol, which is much less

intrusive than existing techniques.

Our reconfiguration technique works in concert with our re-chaining protocol. Re-

call that BChain-3 re-chaining protocol moves faulty replicas to set B, while replicas

that remain in A continues processing client requests. The reconfiguration procedure

operates out-of-band, and thus does not disrupt request processing. Since it can be

done out-of-band, it is not time sensitive, unless more failures occur.

An alternative to reconfiguration could be to recover suspected replicas. How-

ever, recovery is not possible for some types of failures, such as permanent failures.

Recovery may also take a long time, e.g., waiting for a machine to reboot, leaving

the system vulnerable to further failures.

The key idea of our reconfiguration algorithm is to replace the replicas that were

moved to set B, with new replicas. A new replica first acquires a unique identifier. It

also obtains a public-private key pair, and a shared symmetric key with each other

replica in the system.

To initialize reconfiguration, a new replica in B with a unique identifier u sends

a [ReconRequest] to all replicas in the system. Upon receiving the request, correct

replicas send signed messages with their current [History] to replica u. Meanwhile,

the replicas in A continue to execute the chaining protocol, where they also forward

〈Chain〉 messages to the newly joined replica u. In addition, replicas in A also

retransmit missing 〈Chain〉 messages to the replicas in B, including u, as the protocol

requires. After collecting at least f + 1 matching authenticated [History] messages,

u updates its state using the retrieved history and the 〈Chain〉 messages it has

received. At this point, u can be promoted to A when deemed necessary.

78

It is clear that the reconfiguration algorithm can be performed concurrently with

request processing, and as such is not time sensitive. This is because a newly

joined replica is not immediately put into active use. Depending on the re-chaining

algorithm, a new replica will not be used until f re-chainings have taken place

(Algorithm 5), or bf/2c re-chainings with Algorithm 6.

Note that BChain-3 remains safe even if no reconfiguration procedure is used.

Under the circumstance that there are only a small number of faulty replicas, e.g.

3t<f , no regular reconfiguration is required to ensure liveness. Reconfiguration can

be triggered periodically, as in other BFT protocols, or when frequent view changes

and re-chainings occur.

Also note that, one might introduce a third set C that contains all of the “faulty”

replicas, while B contains those that have been reconfigured and can be moved back

to A on demand. The system has to wait if B is empty.

4.3 BChain without Reconfiguration

We now discuss BChain-5, which uses n = 5f + 1 replicas to tolerate f Byzantine

failures, just as Q/U [2] and Zyzzyva5 [69]. With 5f + 1 replicas at our disposal,

we design an efficient re-chaining algorithm, which allows the faulty replicas to be

identified easily without relying on reconfiguration. Meanwhile, a Byzantine quorum

of replicas can reach agreement.

BChain-5 relies on the concept of Byzantine quorum protocols [84]. As depicted

below in Fig. 4.5, set A is a Byzantine quorum which consists of dn+f+1
2
e = 3f + 1

replicas, while set B consists of the remaining of 2f replicas.

BChain-5 has four sub-protocols: chaining, re-chaining, view change, and checkpoint.

In contrast, BChain-3 additionally requires a reconfiguration protocol. The proto-

79

1 2 3f+1 3f+2

head proxy tail tail
3f 5f+1

: 3f+1 replicas : 2f replicas

Figure 4.5. BChain-5.

cols for BChain-3 and BChain-5 are identical with respect to message flow. The

main difference lies in the size of the A set, which now consists of 3f + 1 replicas.

Algorithm 8 shows the re-chaining algorithm of BChain-5; it is structurally the same

as Algorithm 6 for BChain-3.

Algorithm 8 BChain-5 Re-chaining
1: upon [Suspect, py,m, ch, v] from px

2: if px 6= ph then {px is not the head}

3: px is put to the (5f)th position

4: py is put to the end

Assuming the timers are accurately configured and that the head is non-faulty,

it takes at most f re-chainings to move f failures to the tail set B. The proofs for

safety and liveness of BChain-5 are easier than those of BChain-3 due to a different

re-chaining algorithm and the absence of the reconfiguration procedure.

To Reconfigure or not to Reconfigure? The primary benefit of BChain-5 over

BChain-3 is that it eliminates the need for reconfiguration to achieve liveness. This is

beneficial, since reconfiguration needs additional resources, such as machines to host

reconfigured replicas. However, since BChain-5 can identify and move faulty replicas

to the tail set B, we can still leverage the reconfiguration procedure on the replicas

in B, to provide long-term system safety and liveness. This does not contradict the

80

claim that BChain-5 does not need reconfiguration; rather, it just makes the system

more robust. Furthermore, BChain-5 provides flexibility with respect to when the

system should be reconfigured. Specifically, reconfiguration can happen any time

after the system achieves a stable state or simply has run for a “long enough” period

of time.

BChain-α. We can generalize BChain-3 and BChain-5 to provide efficient trade-

offs between the total number of replicas, the number of reconfigurations needed, as

well as the rate of reconfiguration. Let BChain-α be the generalized protocol, where

α ∈ [3..5] is a rational. We can show that for an instance of BChain-α, the safety

and liveness properties can be guaranteed if f ≤ bn−1
α
c. The value of α should not

be less than 3; otherwise it would neither be safe nor live. It does not need to be

greater than 5, since BChain-5 already eliminates the need for reconfiguration.

4.4 Optimizations and Extensions

We now discuss some optimizations and extensions to BChain. Specifically, we show

how to replace (most) signatures with MACs, and how to combine MAC-based and

signature-based BChain. We also discuss two variants of BChain, including a pure

MAC-based protocol without reconfiguration when n = 4 and f = 1.

Replacing most signatures with MACs. As shown in previous work [18,34,50,

69], it is possible to replace most signatures with MACs to reduce the computational

overhead. This is also possible for BChain. In particular, it turns out that signatures

for [Request], 〈Ack〉, and 〈Checkpoint〉 can be replaced with a vector of MACs.

However, in general, signatures on 〈Chain〉 messages cannot be replaced with MACs.

Thus, we call this variant Most-MAC-BChain.

In our re-chaining protocol, a replica suspects its successor if it does not receive

81

the 〈Ack〉 message in time. If a replica accepts and forwards a 〈Chain〉 message

to its successor, it is trying to convince its successor that the message is correct.

Meanwhile, the successor is able to verify if all its preceding replicas indeed honestly

authenticated themselves. This requires transferability for verification, a property

that signatures enjoys, while MACs do not.

We briefly describe an attack where a single replica can “frame” any honest

replica—a scenario that our failure detection mechanism cannot handle, e.g. when

〈Chain〉 messages use MACs instead of signatures. Consider the following example,

where there is only one faulty replica pi, and
⇀

pi=pj and
⇀

pj=pk. The faulty replica

pi simply generates a valid MAC for pj and an invalid MAC for pk. Replica pj will

accept it since the corresponding MAC is valid. It then adds its own MAC-based

signature, and forwards the message to pk. Since pk receives the message with an

invalid MAC produced by pi, it aborts. Replica pj will suspect pk according to our

algorithm, while pi is the faulty one. Generalizing the result, a faulty replica can

frame any honest replica without being suspected.

Replacing all signatures with MACs. We now discuss a variant of BChain,

called All-MAC-BChain, in which all signatures are replaced with a vector of MACs,

even for 〈Chain〉 messages in A. As we discussed above however, these 〈Chain〉 mes-

sages must use signatures. However, if the head does not receive the 〈Ack〉 message

on time, we can simply switch to Most-MAC-BChain to start the re-chaining proto-

col. Once the system regains liveness or faulty replicas have been reconfigured, we

can switch back to All-MAC-BChain. This leads to the most efficient implementation

of BChain. The performance in gracious executions will be that of All-MAC-BChain.

In case of failures, the performance will be that of Most-MAC-BChain, with most

signatures replaced with MACs and taking advantage of pipelining.

The combined protocol is fundamentally different from the ones described in [50]

82

such as Aliph, which does not perform well even in the presence of a single faulty

replica. Note that we evaluate our BChain protocols in Table 7.2 using this protocol

variant.

BChain-3 with n= 4. We now consider BChain-3 configured with (n= 4, f = 1),

and show that this allows two interesting optimizations: BChain-3 without recon-

figuration and All-MAC-BChain-3. This configuration of BChain is quite attractive,

since its replication costs are reasonable for many applications, such as Google’s file

system [48].

BChain-3 without Reconfiguration. We show that, with a slight refinement of the

re-chaining algorithm, BChain-3 can also avoid reconfiguration:

Upon receiving a 〈Suspect〉 from an accuser among the first two replicas in the

chain, the head starts re-chaining. If the head is the accuser, then the accused is

moved to the end of the chain. Otherwise, the accuser becomes the proxy tail, while

the accused becomes the tail. It no longer needs to run the reconfiguration algorithm.

In any future runs of BChain, if the head does not receive a correct 〈Ack〉 message,

it simply switches the proxy tail (i.e., the third replica) and the tail (i.e., the last

replica). A faulty replica can be identified with at most two re-chainings in case

of synchrony. The view change algorithm is still the same as for BChain-3, which

guarantees that eventually it achieves liveness with a bounded number of re-chainings

in the partially synchronous environment.

All-MAC-BChain-3 via All MAC-based signatures. We now show that, contrary to

the general case, BChain-3 with a (n= 4, f = 1) configuration, can be implemented

using only MACs. The reason we can do this is that the second replica in the chain

can no longer frame its successor replica, while the behavior of the head is restricted

by view changes. Thus, a total of twelve MACs are needed for communication

83

between replicas and between replicas and clients. Recall also that a faulty replica

can be identified with at most two re-chainings, and no reconfiguration is required.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

Number of Clients

T
h

ro
u

g
h

p
u

t
(k

op
s/

se
c)

BChain-3

BChain-5

PBFT

Aliph

Zyzzyva

(a) Throughput for the 0/0 benchmark as the

number of clients varies.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

Time

T
h

ro
u

g
h

p
u

t
(k

op
s/

se
c)

BChain-3

BChain-5

PBFT

Aliph

Zyzzyva

(b) Latency for the 0/0 benchmark as the num-

ber of clients varies.

0 0.20.40.60.8 1 1.21.41.61.8 2 2.22.42.62.8 3 3.23.43.63.8 4 4.24.44.64.8 5 5.25.45.65.8 6 6.26.46.6
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

Time

T
h

ro
u

gh
p

u
t

(k
op

s/
se

c)

BChain-3

BChain-5

PBFT

Aliph

Zyzzyva

(c) Throughput for 0/0 benchmark with

40 clients. A failure is injected at 1s for

BChain-3, BChain-5 and PBFT, at 1.5s for

Zyzzyva, and at 2s for Aliph.

−2−1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

Requests

R
es

p
on

se
T

im
e(

m
s)

Actual latency

average latency

adjusted timer

(d) Performance under failure. The actual la-

tency, the average value of base timers, and the

value of base timers for setting timers of the

head.

Figure 4.6. Protocol Evaluation-1.

84

−2−1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

−0.1

−5 · 10−2

0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Requests

R
es

p
on

se
T

im
e(

m
s)

Actual latency

average latency

adjusted timer

(a) Performance attack. The actual latency,

the average value of base timers, and the value

of base timers for setting timers of the uncivil

replica.

R/c R/b W/c W/b

−10

−5

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

L
a
te

n
cy

(m
s)

PBFT Zyzzyva BChain-3 NFS-std

(b) Bonnie++ Benchmark. R/c, R/b, W/c,

and W/b stand for per-character file reading,

block file reading, per-character file writing,

and block file writing, respectively.

Figure 4.7. Protocol Evaluation-2.

4.5 Evaluation

This section studies the performance of BChain-3 and BChain-5 and compares them

with three well-known BFT protocols—PBFT [18], Zyzzyva [69], and Aliph [50].

Aliph [50,111] switches between three protocols: Quorum, Chain, and a backup, e.g.,

PBFT. As Quorum does not work under contention, Aliph uses Chain for gracious

execution under high concurrency. Aliph-Chain enjoys the highest throughput when

there are no failures, however, as we will see, Aliph cannot sustain its performance

during failure scenarios, where BChain is superior.

We study the performance using two types of benchmarks: the micro-benchmarks

by Castro and Liskov [18] and the Bonnie++ benchmark [30]. We use micro-

benchmarks to assess throughput, latency, scalability, and performance during fail-

ures of all the five protocols. In the x/y micro-benchmarks, clients send x kB requests

85

and receive y kB replies. Clients invoke requests in a closed-loop, where a client does

not start a new request before receiving a reply for a previous one. All the protocols

implement batching of concurrent requests to reduce cryptographic and communica-

tion overheads.

All experiments were carried out on DeterLab [12], utilizing a cluster of up to 65

identical machines. Each machine is equipped with a 2.13GHz Xeon processor and

4GB of RAM. They are connected through a 100Mbps switched LAN.

As we discuss in the following, for gracious execution, both BChain-3 and BChain-

5 achieve higher throughput and lower latency than PBFT and Zyzzyva especially

when the number of concurrent client requests is large, while BChain-3 has perfor-

mance similar to the Aliph-Chain protocol. Our experiment bolsters the point of

view described by Guerraoui et al. [50] that (authenticated) chaining replication can

lead to an increase in throughput and a reduction in latency under high concurrency.

In case of failures, both BChain-3 and BChain-5 outperforms all the other protocols

by a wide margin, due to BChain’s unique re-chaining protocol. Through the timeout

adjustment scheme, we show that a faulty replica cannot make the system slower by

manipulating the timeouts. In addition, the results of the NFS use case experiments

show that BChain-3 is only 1% slower than a standard unreplicated NFS.

4.5.1 Performance in Gracious Execution

Throughput. We discuss the throughput of BChain-3 and BChain-5 with different

workloads under contention, where there are multiple clients issuing requests. We

evaluate two configurations of BChain with f=1: BChain-3 with n=4 and BChain-5

with n=6, both using All-MAC-BChain.

We begin by assessing the throughput in the 0/0 benchmark as the number of

86

clients varies. As shown in Fig. 4.6(a), all the other protocols outperform PBFT by a

wide margin. With less than 20 clients, Zyzzyva achieves slightly higher throughput

than the rest. But as the number of clients increases, Aliph-Chain, BChain-3, and

BChain-5 gain an advantage over Zyzzyva. While BChain-3 and Aliph-Chain have

comparable performance, they both outperform BChain-5. For both Aliph-Chain and

BChain-3, peak throughput observed is 22% and 41% higher than that of Zyzzyva

and PBFT, respectively. Note that the pipelining execution of our protocol explains

why BChain-3 does not perform as well when the number of clients is small and why

it scales increasingly better as the number grows larger.

Latency. We examine and compare the latency for the five protocols in the 0/0

benchmark, as depicted in Fig. 4.6(b). As expected, we can see that when the number

of clients is less than 10, all the chain replication based BFT protocols experience

significantly higher latency than both Zyzzyva and PBFT. As the number of clients

increases however, BChain achieves around 30% lower latency than Zyzzyva. Indeed,

BChain-3, for instance, takes 4f message exchanges to complete a single request,

which makes its latency higher than prior BFT protocols, such as PBFT and Zyzzyva

in case of small number of clients. However, our experiments show that BChain-3

and BChain-5 achieve lower latency as the number of clients increases, where the

pipeline is leveraged to compensate for the latency inflicted by the increased number

of exchanges.

Scalability. We tested the performance of BChain-3 varying the maximum number

of faulty replicas. All experiments are carried out using the 0/0 benchmark. The

results are summarized in Table 4.1, comparing BChain-3 with PBFT and Zyzzyva,

for both throughput and latency for different f . We ran the experiments with both

20 and 60 clients.

87

Table 4.1. Throughput and latency improvement of BChain-3, comparing with
PBFT and Zyzzyva, when f differs. Values with parenthesis in red represent
negative improvement.

Number of Clients 20 60

Compared Protocol PBFT Zyzzyva PBFT Zyzzyva

f = 1
throughput 48.61% 17.65% 41.54% 22.59%

latency 27.14% 5.44% 33.72% 26.96%

f = 2
throughput 36.95% 2.50% 37.12% 15.67%

latency 25.50% 5.79% 30.50% 23.85%

f = 3
throughput 1.69% (1.93%) 36.86% 14.04%

latency (1.36%) (2.57%) 26.03% 15.14%

As shown, with almost all the parameters, BChain-3 achieves generally higher

throughput and lower latency than PBFT and Zyzzyva. We observe that, the ad-

vantage of BChain-3 over other protocols decreases as f grows. When f grows to 3

and the number of clients is 20, BChain achieves lower performance than both PBFT

and Zyzzyva. However, when the number of clients is large, BChain still achieves

better performance.

In contrast to many other BFT protocols with a constant number of one-way

message exchanges in the critical path (c.f. Table 7.2), the number of exchanges in

BChain-3 is proportional to f . In BChain-3, a client needs to wait for 2f+2 exchanges

to receive enough correct replies and the head needs to wait for 4f exchanges to

commit a request. This intuitively explains why the performance benefits of BChain-

3 becomes smaller as f increases.

However, as the pipeline is saturated with clients requests and large request

batching is used, compensating for the latency induced by the increased f , BChain-3

88

can perform consistently well. For example, as shown in Table 7.2, the number of

MAC operations at the bottleneck server in BChain-3 is only 1 + 3f+2
b

, compared to

2 + 3f
b

in Zyzzyva and 2 + 8f+1
b

in PBFT, where b is the batch size. When f equals 3

and b equals 20, the number of MAC operations of the bottleneck server is 1.55 for

BChain, 2.45 for Zyzzyva, and 3.25 for PBFT. When f is 3 and b is 60, the numbers

are 1.18 for BChain, 2.15 for Zyzzyva, and 2.41 for PBFT.

4.5.2 Performance under Failures

We now compare the performance of BChain with the other BFT protocols under

two scenarios: a simple crash failure scenario and a Byzantine faulty replica that

performs a performance attack, i.e., it makes the system slow by manipulating the

timer. Note that the case where a faulty replica fails to send/receive correct mes-

sages can be viewed as the case where the faulty replica crashes since a replica only

send/receive messages from a single replica in BChain. As the results in Fig. 4.6(c)

show, BChain has superior reaction to failures. When BChain detects a failure, it will

start re-chaining. At the moment when re-chaining starts, the throughput of BChain

temporarily drops to zero. After the chain has been re-ordered, BChain quickly re-

covers its steady state throughput. The dominant factor deciding the duration of

this throughput drop (i.e. increased latency) is the failure detection timeout, not

the re-chaining. On the other hand, we also show that BChain resists performance

attacks well, such that faulty replicas can slow the system to a pre-specified degree.

Crash Failure. We compare the throughput during crash failure for BChain-3,

BChain-5, PBFT, Zyzzyva, and Aliph. The results are shown in Fig. 4.6(c). We

use f = 1, message batching, and 40 clients. To avoid clutter in the plot, we used

different failure inject times for the protocols: BChain-3, BChain-5, and PBFT all

89

experience a failure at 1s, while Zyzzyva and Aliph experience a failure at 1.5s and

2s, respectively.

We note that Aliph [50,111] generally switches between three protocols: Quorum,

Chain, and a backup, e.g., PBFT. The backup is necessary because the Chain and

Quorum protocols cannot themselves operate with failures. For our experiments, we

adopt a combination of Chain and PBFT as backup, since Aliph’s Quorum protocol

does not work under contention. Moreover, Aliph uses a configuration parameter

k, denoting the number of requests to be executed when running with the backup

protocol. We experimented with both k = 1 and using exponentially increasing

k = 2i. The latter had largest throughput of the two k-configurations, and thus in

Fig. 4.6(c) we only show Aliph (k = 2i).

Even though Aliph exhibits slightly higher throughput than BChain-3 prior to

the failure, its throughput takes a significant beating upon failure, dropping well

below that of the PBFT baseline. As Fig. 4.6(c) shows, Aliph (k = 2i) periodically

switches between Chain and PBFT, after the failure. This explains the throughput

gaps in Aliph. Since k increases exponentially for every protocol switch, it stays

in the backup protocol for an increasing period of time and thus its throughput

increases.

Aliph (k = 1) has significantly lower throughput than Aliph (k = 2i). When a

replica fails, all we can observe are periodical bursts. However, the peak throughput

(for the bursts) is nearly half of the throughput of PBFT when k = 1.

We configured BChain with a fairly high timeout value (100ms). In fact, BChain

can use much smaller timeouts, since one re-chaining only takes about the same

time as it takes for BChain to process a single request. While the signature-based,

view-change like switching taken by Aliph introduces a significant time overhead.

The throughput of PBFT does not change in any obvious way after failure in-

90

jection, showing its stability during failure scenarios. Zyzzyva, on the other hand,

in the presence of failures, uses its slower backup protocol which exhibits even lower

throughput than PBFT.

We claim that even in presence of a Byzantine failure, the throughput of BChain-3

and BChain-5 would not change in a significant way, except that there might be two

(instead of one) short periods where the throughput drops to zero. Note BChain-3

uses at most two re-chainings to handle a Byzantine faulty replica, while BChain-5

uses only one.

Performance Attack. We now show how to set up the timers for replicas in the

chain as discussed in §4.2.4. Initially, there are no faulty replicas and we set the timers

based on the average latency of the first 1000 requests. Fig. 4.6(d) illustrates the

timer setup procedure for a correct replica pi, where each bar represents the actual

latency of a request, line 1 is the average latency δ1,pi , line 2 is the performance

threshold timer ∆′1,pi used to deter performance attacks, and line 3 is the normal

timer ∆1,pi . In our experiment, we set ∆′1,pi = 1.1δ1,pi and ∆1,pi = 1.3δ1,pi . That is,

we expect the performance reduction to be bounded to 10% of the actual latency

during a performance attack by a dedicated adversary.

To evaluate the robustness against a timer-based performance attack, we ran

10 rounds of experiments using the 0/0 benchmark, each with a sequence of 10000

requests. We assume there are no faulty replicas initially and we use the first 1000

request to train the timers. For each experiment, starting from the 1001th request,

we let a replica mount a performance attack by intentionally delaying messages sent

to its predecessor. To simulate different attacks, we simply let the faulty replica

sleep for an “appropriate” period of time following different strategies. However, as

expected our findings show that the actions of a faulty replica is very limited: it

either needs to be very careful not to be accused, thus imposing only a marginal

91

performance reduction, or it will be suspected which will lead to a re-chaining and

then a reconfiguration.

4.5.3 A BFT Network File System

This section describes our evaluation of a BFT-NFS service implemented using

PBFT [18], Zyzzyva [69], and BChain-3, respectively. The BFT-NFS service exports

a file system, which can then be mounted on a client machine. Upon receiving client

requests, the replication library and the NFS daemon is called to reach agreement

on the order in which to process client requests. Once processing is done, replies are

sent to clients. The NFS daemon is implemented using a fixed-size memory-mapped

file.

We use the Bonnie++ benchmark [30] to compare our three implementations

with NFS-std, an unreplicated NFS V3 implementation, using an I/O intensive

workload. We first evaluate the performance on sequential input (including per-

character and block file reading) and sequential output (including per-character and

block file writing). Fig. 4.7(b) shows that the performance of sequential input for all

three implementations only degrades the performance by less than 5% w.r.t. NFS-

std. However, for the write operations, PBFT, Zyzzyva, and BChain-3, respectively,

achieves in average of 35%, 20%, and 15% lower processing speed than NFD-std.

In addition, we also evaluate the Bonnie++ benchmark with the following di-

rectory operations (DirOps): (1) create files in numeric order; (2) stat() files in

the same order; (3) delete them in the same order; (4) create files in an order that

will appear random to the file system; (5) stat() random files; (6) delete the files

in random order. We measure the average latency achieved by the clients while up

to 20 clients run the benchmark concurrently. As shown in Table 4.2, the latency

92

achieved by BChain-3 is 1.10% lower than NFS-std, in contrast to BFS and Zyzzyva.

Table 4.2. NFS DirOps evaluation in fault-free cases.

BChain-3 Zyzzyva BFS NFS-std

41.66s(1.10%) 42.47s(2.99%) 43.04s(4.27%) 41.20s

0 20 40 60 80 100 120 140 time(s)

NFS-std

BChain-3

BChain-3 †
Zyzzyva

Zyzzyva †
PBFT

PBFT †

7
6
5
4

3
2
1

Write(char) Write(block) Read(char) Read(block) DirOps

Figure 4.8. NFS Evaluation with the Bonnie++ benchmark. The † symbol marks
experiments with failure.

Finally, we evaluate the performance using the Bonnie++ benchmark when a

failure occurs at time zero, as detailed in Fig. 4.8. The bar chart also includes data

points for the non-faulty case. The results shows that BChain can perform well even

with failures, and is better than the other protocols for this benchmark.

4.6 Future Work

Chain replication is known to enjoy several benefits in performance, as shown in the

protocol. As a Byzantine fault tolerant chain-replication, BChain is shown to achieve

all the benefits of chain-replication while tolerating Byzantine failure well. However,

it is also shown that BChain does not scale well for two reasons: 1) each message

93

travels through a long chain until agreement is reached, resulting in longer latency;

2) when there are failures, it takes longer to reconfigure in the re-chaining. For future

work, there are several ways to further enhance BChain in wide area network. For

instance, we can use multiple chains simultaneously to handle concurrent requests

in a more efficient way. Another way is to divide a long chain into smaller sections

of chains. In each small section of chain, failures are handled locally and eventually

the whole chain can reach an agreement easily.

4.7 Conclusion

We have presented BChain, a new chain-based BFT protocol that outperforms prior

protocols in fault-free cases and especially during failures. In the presence of failures,

instead of switching to a slower backup BFT protocol, BChain leverages a novel

technique—re-chaining—to efficiently detect and deal with the failures such that

it can quickly recover its steady state performance. BChain does not rely on any

trusted components or unproven assumptions.

94

Chapter 5

Byzantine Fault Tolerance from

Intrusion Detection

The work presented in this chapter was first described in an earlier paper by Duan, et

al. [41]. In this chapter, we present ByzID. We leverage two key technologies already

widely deployed in cloud computing infrastructures: replicated state machines and

intrusion detection systems.

First, we have designed a general framework for constructing Byzantine failure

detectors based on an intrusion detection system. Based on such a failure detector, we

have designed and built a practical Byzantine fault-tolerant protocol, which has costs

comparable to crash-resilient protocols like Paxos. More importantly, our protocol

is particularly robust against several key attacks such as flooding attacks, timing

attacks, and fairness attacks, that are typically not handled well by Byzantine fault

masking procedures.

95

5.1 Introduction

The availability and integrity of critical network services are often protected using

two key technologies: a replicated state machine (RSM) and an intrusion detection

system (IDS).

An RSM is used to increase the availability of a service through consistent repli-

cation of state and masking different types of failures. RSMs can be made to mask

arbitrary failures, including compromises such as those introduced by malware. Such

RSMs are referred to as Byzantine fault-tolerant (BFT). Despite significant progress

in making BFT practical [18, 50], it has not been widely adopted, mainly because

of the complexity of the techniques involved and high overheads. In addition, BFT

is not a panacea, since there are a variety of attacks, such as various performance

attacks that BFT does not handle well [5,29]. Also, if too many servers are compro-

mised then masking is not possible.

An IDS is a tool for (near) real-time monitoring of host and network devices

to detect events that could indicate an ongoing attack. There are three types of

intrusion detection: (a) Anomaly-based intrusion detection [35] looks for a statistical

deviation from a known “safe” set of data. Most spam filters use anomaly detection.

(b) Misuse-based intrusion detection [82] looks for a pre-defined set of signatures

of known “bad” things. Most host and network-based intrusion detection systems

and virus scanners are misuse detectors. (c) Specification-based intrusion detection

systems [68] are the opposite of misuse detectors. They look for a pre-defined set of

signatures of known “good” things.

In practice, BFT and IDSs are almost always used independently of each other.

Additionally, the most commonly used fault-tolerance techniques typically only han-

dle crash failures. For instance, Google uses Paxos-based RSMs in many core infras-

96

tructure services [17, 32]. As a result, only a handful of additional techniques are

typically used to cope with other failures than crashes. However, those techniques

are either ad hoc or are unable to handle attacks and arbitrary failures (e.g., soft-

ware bugs). For attacks that are hard to mask (e.g., too many corrupted servers,

simultaneous intrusions, and various performance attacks), IDSs are usually used.

However, IDSs themselves suffer from deficiencies that limit their utility, including

false positives that overly burden a human administrator who has to process intru-

sion alerts, and false negatives for when an ongoing attack is not detected. Also,

IDSs themselves are not resilient to crashes.

In this chapter, we propose a unified approach that leverages intrusion detection

to improve RSM resilience, rather than using each technique independently. We

describe the design and implementation of a BFT protocol—ByzID—in which we

use a lightweight specification-based IDS as a failure detection component to build

a Byzantine-resilient RSM. ByzID distinguishes itself from previous BFT protocols

in two respects: (1) Its efficiency is comparable to its crash failure counterpart.

(2) It is robust against a wide range of failures, providing consistent performance

even under various attacks such as flooding, timing, and fairness attacks. We note

that ByzID does not protect against all possible attacks, only those that the IDS can

help with. Underlying ByzID are several new design ideas:

Byzantine-resilient RSM. ByzID is a primary-based RSM protocol, adapted for com-

bining with an IDS. In this protocol, a primary receives client requests and issues

ordering commands to the other replicas (backups). All replicas process requests

and they all reply to the client. In the event of a replica failure, a new replica runs

a reconfiguration protocol to replace the failed one. The primary reconfiguration

runs in-band, where other replicas wait until reconfiguration completes. Reconfigu-

ration for other replicas runs out-of-band, where replicas continue to run the protocol

97

without waiting for the reconfiguration.

Monitoring instead of Ordering. Our protocol relies on a trusted specification-based

IDS [68], to detect and suppress primary equivocation, enforce fairness, detect various

other replica failures, and trigger replica reconfiguration. Our IDS is provided with

a specification of our ByzID protocol, allowing the IDS to monitor the behavior of

the replica. Note that, the way our protocol uses the IDS is so simple that the IDS

could be implemented as a trivially small, timed state machine that can be embedded

in a simple reference monitor, and can thus easily be built in hardware. However,

for our proof of concept prototype we leverage the Bro IDS framework [92]. While

some existing BFT protocols use trusted components [26, 63, 80, 110] to decide on

the ordering client requests, our trusted IDS approach simply monitors and discards

messages to enforce ordering.

Independent Trusted Components. In ByzID, each RSM replica is associated with

a separate IDS component. However, even if an IDS experiences a crash, its RSM

replica can continue to process requests. Hence, both liveness and safety can be

retained as long as the RSM replicas themselves remain correct. For BFT protocols

relying on trusted components, RSM replicas typically fail together with their trusted

components.

Simple Rooted-Tree Structure. When deploying ByzID in a local area network (LAN),

we organize the replicas in a simple rooted-tree structure, where the primary is the

root and the backups are its direct siblings (leafs). Furthermore, backups are not

connected with one another. With such a structure and together with the aid of

IDSs we can avoid using cryptography to protect the links between the primary

and the backups. This is because the IDS can enforce non-equivocation, identify

the source and destination of messages, and prevent message injection. Moreover, a

98

backup only needs to send or receive messages from the primary, thus backups need

not broadcast. Such a structure also helps to prevent flooding attacks from faulty

replicas.

Our contributions can be summarized as follows:

• We have designed and implemented a general and efficient framework for con-

structing Byzantine failure detectors from a specification-based IDS.

• Relying on such failure detectors, our ByzID protocol uses only 2f + 1 replicas

to mask f failures. ByzID uses only three message delays from a client’s request

to receiving a reply, just one more than non-replicated client/server.

• We have conducted a performance evaluation of ByzID for both local and wide

area network environments. For LANs, ByzID has comparable performance to

Paxos [73] in terms of throughput, latency, and especially scalability. We also

compare ByzID’s performance with existing BFT protocols.

• We prove the correctness of ByzID under Byzantine failures, and discuss how

ByzID withstands a variety of attacks. We also provide a performance analysis

for a number of BFT protocols experiencing a failure.

• Finally, we use ByzID to implement an NFS service, and show that its per-

formance overhead, with and without failure, is low, both compared to non-

replicated NFS and other BFT implementations.

5.2 Conventions and Notations

Replicas may be connected in a complete graph or an incomplete graph network.

However, for wide area deployments, only a complete graph network makes sense. We

further assume that adversaries are unable to inject messages on the links between the

99

replicas. This is reasonable when all replicas are monitored by IDSs and they reside

in the same administrative domain. We assume that IDSs are trusted components,

but that they may fail by crashing.

Let 〈X〉i,j denote an authentication certificate for X, sent from i to j. Such

certificates can be implemented using MACs or signatures. We use MACs for au-

thentication unless otherwise stated. Let [Z] denote an unauthenticated message for

Z, where no MACs or signatures are appended.

5.3 Byzantine Failure Detector from Specification-

Based Intrusion Detection

Specification-based intrusion detection is a technique used to describe the desirable

behavior of a system. Therefore, by definition, any sequence of operations outside of

the specifications is considered to be a violation. As illustrated in Fig. 5.1(a), we use

an IDS to monitor the behavior of the replication protocol P , executed by a replica.

The IDS receives messages sent to/by P by monitoring packets over the network.

Thus, the IDS cannot modify any messages, only detect misbehavior.

Firewall

IDS
ByzID

Replica

Internet

(a) The IDS interface at a replica.

ByzID IDS

OS

HW

(b) IDS implementation.

Figure 5.1. The IDS/ByzID architecture. (Components shown on gray back-
ground are considered to be trusted.)

100

5.3.1 Byzantine Failure Detector Specifications

As depicted in Fig. 5.1(a), each replica is equipped with a local IDS agent, which

monitors the replica’s incoming and outgoing messages. In our protocol, the IDS

captures the network packets of the protocol through port number and analyze them

according to the specification. Thus, the IDS acts as a distributed oracle and triggers

alerts if the replica does not follow the specifications of the prescribed protocol P .

In case of an alert, the detected replica should be recovered, or removed through a

reconfiguration procedure. Meanwhile, the messages sent by the faulty replica should

be blocked. This is accomplished by the IDS agent inserting a packet filter into the

underlying OS kernel.

The trusted IDS and the untrusted protocol P can be separated in various

ways [26], e.g. using virtual machines or the IDS can be implemented in trusted

hardware. In our prototype however, they simply execute as separate processes un-

der the same OS, as shown in Fig. 5.1(b).

The primary orders client requests by maintaining a queue, as shown in Fig. 5.2.

To ensure that the primary orders messages correctly, we define a set of IDS speci-

fications for Byzantine failure detectors. Such detectors can be used together with

most existing primary-based BFT protocols. Below we summarize the specifications

for our Byzantine failure detector.

• Consistency. The primary sends consistent messages to the other replicas.

• Total Ordering. The primary sends totally ordered requests to the replicas.

• Fairness. The primary orders requests in FIFO order.

• Timely Action. The primary orders client requests in a timely manner.

101

(1) The consistency rule prevents the primary from sending “inconsistent” order

messages to the other replicas without being detected. The order message is the

message sent by the primary to initialize a round of agreement protocol, such as

the pre-prepare message in PBFT [18]. More specifically, the primary must send

the same order message to the remaining n − 1 replicas. To this end, the IDS can

monitor the number of matching messages with the same sequence number. In case

of inconsistencies, an alert is raised and the inconsistent messages are blocked.

(2) The total ordering rule prevents primary from introducing gaps in the message

ordering. The sequence number in the order messages sent by the primary must

be incremented by exactly one. Namely, the primary sends an order message with

sequence number N only after it has sent an order message for N − 1. In the event

that the primary sends out an “out-of-order” message, an alert is raised by the IDS.

(3) We argue that the conventional fairness definition is insufficient for many fairness-

critical applications, such as registration systems for popular events, e.g. concerts or

developer conferences with limited capacity. Thus, we define perfect fairness such

that the RSMs must execute the client requests in FIFO order. As shown in Fig. 5.2,

the IDS monitors client requests received by the primary and the order messages sent

by the primary. With this, the IDS can verify that the primary follows the correct

client ordering observed by the IDS. This is typically hard to achieve for common

BFT protocols.

+

merge by
 timeclient requests

primary queue

client 0

client 1

client 2

m7
 m3

 m0

 m5
 m1

 m6
 m4

 m2

 m7
 m3

 m0
 m1

 m2
 m4

 m5
 m6

Figure 5.2. Queue of client requests.

102

(4) The timely action rule detects crash-stop and a “slow” primary. The IDS simply

starts a timer for the first request in the queue. If the primary sends a valid order

message before the timer expires, the IDS cancels the timer. Otherwise, the IDS

raises an alert. The timer can be a fixed value or adjusted adaptively, e.g. based on

input from an anomaly-based IDS.

Traditionally, BFT protocols have used arbitrarily-chosen timeouts as one means

for detecting faulty actors with excessive latencies. But those timeouts may not

reflect reality. As such, anomaly detection is another intrusion detection technique

that can help address this issue. Because anomaly detection is typically based on

a statistical deviation from normal behavior, we use anomaly detection to baseline

the latencies between actors at the beginning and then look for deviations from the

baseline outside a particular bound. The baseline can be updated over time to take

benign changes in system and network performance into account. This is typically

done by weighting recent baselines less than older baselines so that an adversary

cannot “game” the system as easily.

5.3.2 The IDS Algorithm

Our IDS specifications are detailed in Algorithm 9. The IDS maintains the following

values: a queue of client requests Q, current [Order] message M , current sequence

number N , a boolean array C[n] used to ensure that an [Order] message is sent to

all replicas, and a timer ∆ for the timely action rule.

As depicted in Fig. 5.2, the primary stores the client requests in a total order [71]

according to the time of receiving them. The IDS also keeps the same queue of

requests and monitors the [Order] messages sent by the primary. As shown in

Algorithm 9, when the IDS observes a new [Order] message, it verifies the correct-

103

Algorithm 9 The IDS Specifications

1: Initialization:

2: n {Number of replicas}

3: Π={p0, p1, · · · , pn−1} {Replica set; p0 is the primary}

4: Q {Queue of client requests}

5: M {Current [Order] msg being tracked}

6: N ← 0 {Current sequence number}

7: C ← ∅ {Array: C[i] = 1 if seen [Order] msgs to pi}

8: ∆ {Timer; initialized by anomaly-based IDS}

9: upon m = 〈Request, o, T, c〉c,p0
10: if |Q| = 0 then

11: starttimer(∆) {For timely action}

12: Q.add(m) {Add client c’s msg to Q}

13: upon M ′ = [Order, N ′,m, v, c]p0,pi

14: if N ′ = N + 1 ∧ |C| = 0 ∧m = Q.front() then

15: N ← N ′ {New current sequence number}

16: M ←M ′ {New current [Order] msg}

17: C[i]← 1 {Have seen [Order] msg to pi}

18: else if |C| > 0 ∧ C[i] = 0 ∧M = M ′ then

19: C[i]← 1 {Have seen [Order] msg to pi}

20: if |C| = n− 1 then {Seen enough [Order] msgs?}

21: C ← ∅ {Reset array}

22: Q.remove() {Remove msg from Q}

23: canceltimer(∆)

24: if |Q| > 0 then

25: starttimer(∆) {For timely action}

26: else

27: alert {Violation of first three specifications}

28: upon timeout(∆)

29: alert {Violation of timely action specification}

104

ness of total ordering, consistency, and fairness. Total ordering is violated, if the

sequence number in the [Order] message is different from N + 1. Consistency is

violated if the primary does not send to the other n−1 replicas. Fairness is violated,

if the request in the [Order] message is not equal to the first request in the IDS’s

queue.

To monitor the timely action, the IDS starts a timer in two cases:

a) The queue is empty and the IDS observes a new client request, as shown in

Lines 10 − 11; b) The primary has already sent an [Order] message to the other

replicas and the queue is not empty, as shown in Lines 24 − 25. Finally, an alert is

also raised if the primary does not send the [Order] message to the other replicas

before the timer expires.

5.4 The ByzID Protocol

ByzID has three subprotocols: ordering, checkpointing, and replica reconfiguration.

The ordering protocol is used during normal case operation to order client requests.

The checkpoint protocol bounds the growth of message logs and reduces the cost

of reconfiguration. The reconfiguration protocol reconfigures the replica when its

associated IDS generates an alert.

We distinguish between normal and fault-free cases as follows: we define the

normal case as the primary being correct, while the other replicas might be faulty.

Note that, the normal case definition is less restrictive than the fault-free case, where

all replicas must be correct.

BFT protocols that rely on trusted components, e.g., A2M [26], TrInc [80], and

CheapBFT [63], can use 2f + 1 replicas to tolerate f failures and use one less round

of communication than PBFT. While these other protocols use trusted hardware

105

directly to order clients requests, we achieve the same goal using a software IDS

that conducts monitoring and filtering. This feature makes it possible for the system

to achieve safety even if all IDSs are faulty. We use the Byzantine failure detector

for the primary to ensure that the requests are delivered consistently, in a total

order, and in a timely and fair manner. With the aid of the IDS, it is possible to

reduce communication rounds further for the normal case. Ideally, we seek a protocol

comparable to the fault-free protocol of Zyzzyva [69] (and minZyzzyva [110]).

To this end, we follow a primary-backup scheme [4,15], where in each configura-

tion, one replica is designated as the primary and the rest are backups. The correct

primary sends order messages to the backups, and all correct replicas execute the

requests and send replies to clients.

However, two technical problems remain. First, since our protocol lacks the

regular commit round, we need the primary to reliably send messages through fair-

loss links between the potentially faulty primary and the backups. Second, the

Byzantine failure detector does not enforce authentication between the primary and

the backups.

To address the first problem, we require backups to send [Ack] messages to the

primary. And with the aid of the IDSs, we also provide a mechanism to handle

message retransmissions. For the second problem, we distinguish between the core

ByzID protocol for LANs, and ByzID-W for wide area networks (WANs). ByzID

exploits the non-equivocation property provided by the IDS, and its ability to track

the source and destination of messages. This allows ByzID to operate without cryp-

tography on the links connecting the replicas.

To cope with the possibility of message injections in WANs, the ByzID-W primary

instead uses authenticated order messages. These must be verified by both the

backup replicas and the IDS. See §5.4.2 for further details.

106

5.4.1 The ByzID Protocol

The ordering protocol. Fig. 5.3 and Fig. 5.4 depict normal case operation. Below

we describe the steps involved in the ordering protocol.

client

0

1

2

〈REPLY〉

[ACK][ORDER]

〈REQUEST〉

Figure 5.3. The ByzID protocol message flow.

IDSIDS

IDS

Client

[ORDER]

REPLY
[ACK] 0 0

1 1 2 2 IDSIDS

IDS

Client

0 0

1 1 2 2

[ORDER,N,m1,v, c] [ORDER,N,m2,v,c]

Figure 5.4. ByzID equipped with IDSs. The primary assigns sequence number to
the request and sends [Order] message to the replicas. If the messages to different
replicas are not consistent, the messages are blocked by the IDS equipped at the
primary.

Step 1: Client sends a request to the primary. A client c sends the primary p0 a

request message 〈Request, o, T, c〉c,p0 , where o is the requested operation, and T is

the timestamp.

Step 2: Primary assigns a sequence number to the request and sends an [Order]

message to the backups. When the primary receives a request from the client, it

assigns a sequence number N to the request and sends an [Order, N,m, v, c] message

107

to the backups, where m is the request from the client, v is the configuration number,

and c is the identity of the client.

IDS details (at primary): The IDS verifies the specifications mentioned in §5.3. Each

time the specifications are violated, the IDS blocks the corresponding messages and

generates an alert such that the primary will be reconfigured.

Step 3: Replica receives an [Order] message, replies with an [Ack] message to the

primary, executes the request, and sends a 〈Reply〉 to the client. When replica pi

receives an [Order, N,m, v, c] message, it sends the primary an [Ack, N,D(m), v, c]

message with the same N , m, v, and c as in the [Order] message. A backup pi

accepts the [Order] message if the request m is valid, its current configuration is v,

and N = N ′+1, where N ′ is the sequence number of its last accepted request. If the

replica pi accepts the [Order] message, it executes operation o in m and sends the

client a reply message 〈Reply, c, r, T 〉pi,c, where r is the execution result of operation

o, and T is the timestamp of request m. If pi receives an [Order] message with

sequence number N > N ′+ 1, it stores the message in its log and waits for messages

with sequence numbers between N and N ′. It executes the request with sequence

number N after it executes requests with sequence numbers between N ′ and N .

IDS details (at backups): The IDS at a backup pi starts a timer when it observes an

[Order] message. If pi does not send an [Ack] message in time, the IDS generates

an alert.

Step 4: Primary receives [Ack] messages from all backups and completes the re-

quest. Otherwise, it retransmits the [Order] message. When the primary receives

an [Ack, N,D(m), v, c] message, it accepts the message if the fields N , m, v, and c

match those in the corresponding [Order] message. If the primary collects [Ack]

messages from all the backups, it completes the request.

108

Our protocol is also compatible with common optimizations such as batching and

pipelining. For pipelining, the primary can simply order a new request before the

previous one is completed. However, to prevent the primary from sending [Order]

messages too rapidly, we limit the number of outstanding [Order] messages to a

threshold τ . The primary sends an [Order] message with sequence number N only

if it completes requests with sequence numbers smaller than N − τ .

The primary keeps track of the sequence number of the last completed request, N1,

and the sequence number of its most recently sent [Order] message, N2. Obviously,

we have that N2 ≥ N1. When the primary sends an [Order] message for sequence

number N1, it starts a timer ∆1. If the primary does not receive [Ack] messages

from all the backups before the timer expires, it retransmits the [Order] message to

the backups from which [Ack] messages are missing. Otherwise, the primary cancels

the timer and starts a new timer for the next request, if any.

An example is illustrated in Fig. 5.5, where the primary sends [Order] messages

for requests with sequence numbers from N1 to N2. At t1, the primary sends an

[Order] message for N1, and starts a timer ∆1. At t3, it has collected [Ack] messages

from all backups and cancels the timer. Since the primary has already completed the

request with sequence number N1 + 1 at t2, it just starts a new timer for a request

with N1 + 2 at t3.

2 ACK,N +1�

ORDER,N ORDER,N +1 ORDER,N +2 ORDER,N

canceltimer(� , N)

2 ACK,N starttimer(� , N)

starttimer(� , N +2)

1

1

1

21 3

1

1

1

1

1

1 1 1 2[] [[[

[
[

]]]

]
]

Figure 5.5. An example for Step 4.

109

IDS details (at primary): An alert is raised if the primary: (1) does not retransmit

the [Order] message in time, or (2) it “retransmits” an inconsistent [Order] message.

To accomplish these detections, also the IDS starts a timer corresponding to the

primary’s ∆1 timer. If the primary receives enough [Ack] messages before ∆1 expires,

the IDS cancels the timer. However, if the primary does not receive [Ack] messages

from all backups before ∆1 expires, the IDS starts another timer, ∆2. If this timer

expires, before the IDS observes a retransmitted [Order] message, an alert is raised.

Finally, the IDS keeps track of the sequence number of the last [Order] message

sent by the primary, N3. Each time the primary sends an [Order] message with

sequence number smaller than N3, it is considered a retransmission. The IDS checks

if a retransmitted [Order] message matches an [Order] message in its log. If there

is no match, an alert is raised.

Step 5: Client collects f + 1 matching 〈Reply〉 messages to complete the request.

The client completes a request when it receives f + 1 matching reply messages.

Checkpointing. ByzID replicas store messages in their logs, which are truncated

by the checkpoint protocol. Each replica maintains a stable checkpoint that captures

both the protocol state and application level state. In addition, a replica also keeps

some tentative checkpoints. A tentative checkpoint at a replica is proven stable only

if all its previous checkpoints are stable and it collects certain message(s) in the

checkpoint protocol to prove that the current state is correct.

We now briefly describe the ByzID checkpoint protocol. Every replica constructs

a tentative checkpoint at regular intervals, e.g., every 128 requests. A backup replica

pi sends a [Checkpoint, N, d, i] message to the primary, where N is the sequence

number of last request whose execution is reflected in the checkpoint and d is the

digest of the state. The primary considers a checkpoint to be stable when it has

110

collected f matching [Checkpoint] messages from different backups, and then sends

a [StableCheckpoint, N, d] message to the backups. The primary and f backups

prove that the checkpoint is stable. When a backup receives a [StableCheckpoint],

it considers the checkpoint stable. A replica can truncate its log by discarding mes-

sages with sequence numbers lower than N .

IDS details: The IDS needs to audit the [Checkpoint] messages from the backups.

When it has seen f+1 matching [Checkpoint] messages from the backups, it starts a

timer. If the primary does not send the corresponding [StableCheckpoint] message

to all the backups before the timer expires, an alert is generated. IDS can also run

a checkpoint protocol to prevent its own log from growing without bound.

However, it delays discarding its stable checkpoints to help replica reconfigura-

tion, as detailed in the following.

Replica reconfiguration. Reconfiguration is a technique for stopping the current

RSM and restarting it with a new set of replicas [77]. We now describe ByzID’s

reconfiguration scheme. Recall that when any specifications of a replica are violated,

the IDS generates an alert and triggers reconfiguration. If the IDS at the primary

generates an alert, all the replicas are notified and stop accepting messages. The

primary reconfiguration procedure operates in-band where all backups wait until the

procedure completes. The backup reconfiguration procedure operates out-of-band.

Namely, only the primary is notified with a backup replica IDS alert; the remaining

replicas continue to run the protocol without having to wait for the procedure to

complete. Assume in a configuration v the set of replicas is Π = {p0, p1, · · · , pn−1}.

We assume that after a reconfiguration, pi ∈ Π is replaced by pj 6∈ Π. If pi is

the primary, the configuration number becomes v + 1 after reconfiguration. Clearly,

replica pj is also equipped with an IDS component.

111

Primary reconfiguration. To initialize primary reconfiguration, a new primary pj

sends a [ReconRequest] message to all replicas in Π.1 To respond, each replica pk

sends pj a signed 〈Reconfigure, v + 1, N, C,S〉pk message, where N is the sequence

number of the last stable checkpoint, C is the last stable checkpoint, and S is a set

of valid [Order] messages accepted by pk with sequence numbers greater than N .

When pj collects at least f+1 matching authenticated 〈Reconfigure〉 messages,

it updates its state using the state snapshot in C and sends a [NewConfig, v+1,V ,O]

to Π\pi, where V is a set of f+1 〈Reconfigure〉 messages and O is a set of [Order]

messages computed as follows: first, the primary pj obtains the sequence number

min of the last stable checkpoint in C and the largest sequence number max of the

[Order] message that has been accepted by at least one replica, which is obtained

from S.

The primary then creates an [Order] message for each sequence number N be-

tween min and max. There are two cases: (1) If there is at least one request in the S

field with sequence number N , pj generates an [Order] message for this request; (2)

If there is no such request in S, pj creates an [Order] message with a Null request.

A backup accepts a [NewConfig] message if the set of 〈Reconfigure〉 messages in

V are valid and O is correct. The correctness of O can be verified through a similar

computation as the one used by the primary to create O. It then enters configuration

v + 1.

Backup reconfiguration. A new backup replica pj sends a message [ReconRequest]

to the primary. The primary then responds a message [Reconfigure, v + 1, N, C,S]

to pj, where N is the sequence number of the primary’s last stable checkpoint, C is its

last stable checkpoint, and S is a set of valid [Order] messages sent by the primary

1Note that pj should also send the message to the current primary, because it might still be
correct.

112

with sequence number greater than its last stable checkpoint. When pj receives the

[Reconfigure] message, it updates its state by the state snapshot in C, and then

processes the [Order] messages in S.

IDS details: The IDS coupled with pj obtains its own state from the IDS of replica

pi.

During primary reconfiguration, the IDS at new primary pj monitors all the

〈Reconfigure〉 messages from all the replicas in Π and checks if they match its own

IDS log. If the checkpoint is not valid or the [Order] messages in S are not the same

as the messages sent by pi, the IDS blocks the 〈Reconfigure〉 message. Clearly it

is with the aid of IDS that primary reconfiguration becomes simpler.

During the backup reconfiguration, the IDS at the primary checks if the primary

sends the backup a [Reconfigure] message with the same C and S as in its IDS log.

This ensures that replica pj receives consistent state as other replicas.

Correctness. We now prove that ByzID is both safe and live.

Theorem 1 (Safety). If no more than f replicas are faulty, non-faulty replicas

agree on a total order on client requests.

Proof: We first show that ByzID is safe within a configuration and then show

that the ordering and replica reconfiguration protocols together ensure safety across

configurations.

Within a configuration. We prove that if a request m commits at a correct replica

pi and a request m′ commits at a correct replica pj with the same sequence number

N within a configuration, it holds that m equals m′. We distinguish three cases:

(1) either pi or pj is the primary; (2) neither pi nor pj is the primary, and neither

has been reconfigured; (3) neither pi nor pj is the primary, and at least one of the

two replicas has been reconfigured. We briefly prove the (most involved) case (3).

113

During a backup reconfiguration, its state can be recovered by communicating with

the primary with the aid of the IDS. Thereafter, the new reconfigured replica is

indistinguishable from the correct replica without having been reconfigured. If m

with sequence number N commits at a correct replica pi, it holds that pi receives

an [Order] message with m and N from the primary (either due to the ordering or

backup reconfiguration protocols), since we assume there are no channel injections.

Similarly, pj receives an [Order] message with m′ and N from the primary. There-

fore, it must be that m = m′, since otherwise it violates the consistency specification

enforced by the IDS. The total order thus follows from the fact that that the requests

commit at the replicas in sequence-number order.

Across configurations. We prove that if m with sequence number N is executed by a

correct replica pi in configuration v and m′ with sequence number N is executed by

a correct replica pj in configuration v′, it holds that m equals m′. We assume w.l.o.g.

that v < v′. Recall that if a backup is reconfigured, the state of the new replica is

consistent with other backups. Thus, we do not bother differentiating reconfigured

replicas from correct ones and focus on the case where pi and pj are both backups.

The proof proceeds as follows. If m with sequence number N is executed by pi

in configuration v, the primary must have sent consistent [Order] messages for m

to all the backups. On the other hand, if m′ with sequence number N is executed

by pj in configuration v′, the primary in v′ sends consistent [Order] messages for

m′ to all the backups. This implies that the primary in v′ receives 〈Reconfigure〉

messages from at least f + 1 replicas with m′ and N , at least one of which is correct.

Inductively, we can prove that there must exist an intermediate configuration v1

where the corresponding primary sent an [Order] message with m and N and an

[Order] message with m′ and N . Due to the consistency specification enforced by

the IDS, it holds that m equals m′. The total order of client requests thus follows

114

from the fact that requests are executed in sequence-number order. �

Theorem 2 (Liveness). If no more than f replicas are faulty, then if a non-

faulty replica receives an request from a correct client, the request will eventually

be executed by all non-faulty replicas. Clients eventually receive replies to their

requests.

Proof: We begin by showing that if a correct replica accepts an [Order] message

with request m and N , all the correct replicas eventually accept the same [Order]

message.

There are two types of timers used for IDSs: (1) the timers to monitor the timely

actions for the replicas’ local operations, and (2) the timer in the primary IDS to

wait for the [Ack] message. The first type of timers are initialized and tuned by

the anomaly-based IDS. For the [Ack] timer, the IDS at the primary can double the

timeouts when less than f+1 replicas send the [Ack] messages on time. Alternatively,

the primary retransmits the [Order] message but starts a timer with the same value.

If the retransmission occurs too frequently, the timer can be doubled.

We now show that if a correct replica pi accepts an [Order] message with request

m and N , all the correct replicas accept the same [Order] message. According to

the protocol and the consistency rule, if pi receives an [Order] message with m

and N , the primary sends the same [Order] message to all backups. The primary

completes the request when it collects n − 1 matching [Ack] messages. If a faulty

backup does not send the [Ack] message, the IDS raises an alert and the faulty replica

is reconfigured. The [Order] message may be dropped by the fair-loss channel, in

which case the primary will not receive the [Ack] message on time. The primary

retransmits the [Order] messages until the backups receive it. If the primary does

not do so, it will be detected by the IDS and be reconfigured. Then the new primary

115

will send (and probably need to retransmit) the [Order] messages until the backups

receive it. Therefore, all correct replicas will receive the [Order] message eventually.

The total ordering specification is also vital to achieve liveness. If the specification

is not enforced, then according to our protocol, backups will have to wait for the

[Order] messages with incremental sequence numbers to execute. Since they are at

least f+1 correct replicas, the client always receives a majority of f matching replies

from the replicas, as long as the correct replicas reach an agreement. If it does not

receive enough replies on time, it simply retransmits the request and doubles its own

timer. �

5.4.2 The ByzID-W Protocol

When deploying ByzID in a WAN environment, several adjustments to the core

protocol are needed. First, there must be complete graph network between the

replicas. Second, since the IDS cannot be relied upon to prevent message injection

on the WAN links, we now use authenticated links between the replicas. That is,

order messages are authenticated using deterministic signatures, allowing the IDS to

efficiently support retransmissions of previously signed order messages.

5.5 ByzID Implementation with Bro

As a proof of concept, we have implemented our Byzantine failure detector for ByzID

using the Bro [92] specification-based IDS. Bro detects intrusions by hooking into

the kernel using libpcap [86], parsing network traffic to extract semantics, and then

executing event analyzers. To support ByzID, we have adapted Bro as shown in

Fig. 5.6. First, we have built a new ByzID parser to process messages and generate

116

ByzID-specific events. These events are then delivered to their event handler, based

on their type. The IDS specifications for ByzID is implemented as scripts written in

the Bro language. The policy interpreter executes the scripts to produce real-time

notification of analysis results, including alerts describing violation of BFT protocol

specifications.

 ...policies ByzID
specifications

...parsers ByzID
parsers

Network

ByzID Analyzer

Event
Control

Policy Script
Interpreter

Event
Engine

Packet
Stream

Event
Stream

Real-time
notification

Policy
Script

Figure 5.6. ByzID analyzer based on Bro.

ByzID parser. The network packet parser decodes byte streams into meaningful

data fields. We use binpac [91], a high-level language for describing protocol parsers

to automatically translate the network packets into a C++ representation, which

can be used by both Bro and ByzID. We represent the syntax of ByzID messages by

binpac scripts. During parsing, the parser first extracts the message tag, sequence

number, and configuration number. The messages unrelated to the specifications

are filtered during parsing; other messages are delivered to their corresponding event

handler.

Event handler. Event handlers analyze network events generated by the ByzID

parser. The event handler provides an interface between the ByzID parser and the

117

policy script interpreter. Each message type is associated with a separate event

handler, and only messages with the appropriate tags are delivered to that handler.

The events are then passed to the policy script interpreter to validate that the events

do not violate the specifications.

ByzID specifications. The policy script contains the specifications of the ByzID

protocol. Once event streams are generated by the event handler, it performs the

inter-packet validation. The policy script interpreter maintains state from the parsed

network packets, from which the incoming packets are further correlated and ana-

lyzed. Messages that violate the specifications are blocked and an alert is raised.

5.6 Performance Evaluation

In this section we evaluate the performance of ByzID by comparing it with three well-

known BFT protocols—PBFT [18], Zyzzyva [69], Aliph [50], and an implementation

of the crash fault tolerant protocol—Paxos [73]. The main conclusion that we can

draw from our evaluation is that ByzID’s performance is slightly worse that Paxos due

to the overheads of the IDS and cryptographic operations. Considering the similarity

in message flow between ByzID and Paxos, this is unsurprising. However, ByzID’s

performance is generally better than the other BFT protocols in our comparison.

We do not compare ByzID with other BFT protocols that depend on trusted

hardware, such as A2M [26], TrInc [80], and MinBFT [110], since we do not have

access to the relevant hardware platforms. However, based on published performance

data for these protocols, they generally do not offer higher throughput and lower

latency than Aliph [63, 110].2 We note that, the IDS component of ByzID could be

implemented efficiently in trusted hardware as well.

2We note that A2M and TrInc must use signatures due to the impossibility result of [27].

118

We evaluated throughput, latency, and scalability using the x/y micro-benchmarks

by Castro and Liskov [18]. In these benchmarks, clients send x kB requests and re-

ceive y kB replies. Clients issue requests in a closed-loop, i.e., a client issues a new

request only after having received the reply to its previous request. All protocols in

our comparison implement batching of concurrent requests to reduce cryptographic

and communication overheads. All experiments were carried out on Deterlab, uti-

lizing a cluster of up to 56 identical machines. Each machine is equipped with a

3 GHz Xeon processor and 2 GB of RAM. They run Linux 2.6.12 and are connected

through a 100 Mbps switched LAN.

Throughput. We first examined the throughput of both ByzID and ByzID-W under

contention and compared them with PBFT, Zyzzyva, Aliph, and Paxos. Fig. 5.7

shows the throughput for the 0/0 benchmark when f = 1 and f = 3, as the number

of clients varies. Our results show that ByzID outperforms other BFT protocols in

most cases and is only marginally slower than Paxos. As observed in Fig. 5.7(a),

ByzID consistently outperforms Zyzzyva, which achieves better performance than

ByzID-W and PBFT. Since ByzID-W uses signatures, it achieves lower throughput

than Zyzzyva. The reason ByzID-W has better performance than PBFT is due to the

reduction of communication rounds. Aliph outperforms Zyzzyva and ByzID when

the number of clients is big enough, mainly because it exploits the pipelined execution

of client requests. But as shown in Fig. 5.7(b), ByzID consistently outperforms other

BFT protocols when f = 3. For both f = 1 and f = 3, ByzID achieves an average

throughput degradation of 5% with respect to Paxos. This overhead is mainly due

to the cryptographic operations and IDS analysis. Similar results are observed in

other benchmarks.

Latency. We have also compared the latency of the protocols without contention

119

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

T
h
ro

u
g
h
p
u
t
(K

o
p
s
/s

e
c
)

Number of clients

PBFT
Zyzzyva

Aliph
ByzID

ByzID-W
Paxos

(a) Throughput with f = 1; n = 3 replicas.

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

T
h
ro

u
g
h
p
u
t
(K

o
p
s
/s

e
c
)

Number of clients

PBFT
Zyzzyva

Aliph
ByzID

ByzID-W
Paxos

(b) Throughput with f = 3; n = 7 replicas.

Figure 5.7. Throughput for the 0/0 benchmark as the number of clients varies.
This and subsequent graphs are best viewed in color.

where a single client issues requests in a close-loop. The results for the 0/0, 0/4, 4/0,

and 4/4 benchmarks with f = 1 are depicted in Fig. 5.8. We observe that ByzID

outperforms other protocols except Paxos. However, the difference between ByzID

and Paxos is less than 0.1 ms. The reason ByzID has generally low latency is that

120

Table 5.1. Throughput improvement of ByzID over other BFT protocols. Values
in (red) represent negative improvement.

Clients Protocol f = 1 f = 2 f = 3 f = 4 f = 5

25 PBFT 42.37% 45.71% 46.80% 49.14% 51.37%

25 Zyzzyva 17.19% 19.49% 25.49% 26.07% 27.72%

25 Aliph 40.42% 47.84% 67.56% 73.46% 76.98%

peak PBFT 27.15% 32.57% 36.59% 41.82% 43.90%

peak Zyzzyva 3.92% 8.43% 9.68% 12.25% 11.08%

peak Aliph (3.48%) (1.24%) 4.57% 7.71% 8.92%

ByzID only requires three one-way message latencies in the fault-free case.

 0

 0.2

 0.4

 0.6

 0.8

 1

0/0
0/4

4/0
4/4

L
a
te

n
c
y
(m

s
)

Benchmark

PBFT
Zyzzyva

Aliph
ByzID

ByzID-W
Paxos

Figure 5.8. Latency for the 0/0, 0/4, 4/0, and 4/4 benchmarks.

Scalability. To understand the scalability properties of ByzID, we increase f for

all protocols and compare their throughput. All experiments are carried out using

121

Table 5.2. Throughput degradation when f increases.

Clients Protocol f = 2 f = 3 f = 4 f = 5

25 PBFT 3.82% 9.40% 10.20% 15.04%

25 Zyzzyva 3.45% 8.66% 12.50% 16.80%

25 Aliph 6.50% 18.30% 28.00% 35.60%

25 ByzID 1.56% 2.20% 5.93% 9.67%

peak PBFT 4.25% 7.54% 13.88% 17.85%

peak Zyzzyva 4.32% 5.89% 11.07% 13.02%

peak Aliph 4.84% 8.33% 13.93% 17.61%

peak ByzID 1.70% 2.80% 3.94% 7.02%

the 0/0 benchmark. Table 5.1 compares the throughput of ByzID with three other

BFT protocols, and Table 5.2 shows the throughput degradation for all four BFT

protocols as f increases. We observe in Table 5.1 that the throughput improvement

for ByzID over the other BFT protocols consistently increases as f grows. Table 5.2

shows that ByzID’s own throughput has the lowest degradation rate among all four

BFT protocols. For instance, ByzID’s peak throughput is only reduced by 7.02% as

f increases to 5 (i.e., when n=11). These results clearly show that ByzID has much

better scaling properties than the other BFT protocols.

122

5.7 Failures, Attacks, and Defenses

The fact that a BFT protocol is live does not mean that the protocol is efficient.

It is therefore important to analyze the performance and resilience of the protocol

in face of replica failures and malicious attacks. In this section, we discuss how

well ByzID withstands a variety of Byzantine failures, and also demonstrate some

key design principles underlying our design. We distinguish the replica failures due

to system crashes, software bugs, and hardware failures from those attacks induced

by dedicated adversaries that aim to subvert the system or deliberately reduce the

system performance. Note that such a distinction is neither strict nor accurate.

However, one can view the two types of evaluation as different perspectives to analyze

the performance of ByzID.

5.7.1 Performance During Failures

We study the performance of the different BFT protocols for f = 1 under high

concurrency, and in the presence of one backup failure.3 To avoid clutter in the

plot, PBFT, Zyzzyva, and ByzID experience a failure at t = 1.5 s, while for Aliph at

t = 2.0 s. In case of failures, we require Aliph to switch between Chain and a backup

abstract (e.g., PBFT) since its Quorum abstract does not work under contention. We

set the configuration parameter k as 2i, i.e., Aliph switches to Chain after executing

k = 2i requests using its backup abstract.4

As shown in Fig. 5.9, neither PBFT or ByzID experience any throughput degra-

dation after a failure injection. This is mainly due to their broadcast nature. How-

ever, the performance of Zyzzyva after a failure is reduced by about 40% because it

3The situation falls into our generalized definition of a normal case.
4Another option is to set k as a constant [50], but in our experience its performance during

failure is inferior to using k = 2i.

123

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5 6

T
h
ro

u
g
h
p
u
t
(K

o
p
s
/s

e
c
)

Time(s)

PBFT

Zyzzyva

ByzID

Aliph

PBFT
Aliph

Zyzzyva
ByzID

Figure 5.9. Throughput after failure at 1.5 s (2.0 s for Aliph).

switches to its slower backup protocol. Though Aliph has a slightly higher through-

put than ByzID prior to the failure, its throughput reduces sharply upon failure,

dropping below that of the PBFT baseline. Aliph periodically switches between

Chain and PBFT after the failure, which explains the throughput gaps in Aliph.

Since k increases exponentially for every protocol switch, it stays in the backup

protocol for an increasing period of time.

5.7.2 Performance under Active Attacks

Too-Many-Server Compromises. Like other BFT protocols relying on trusted

components, ByzID can mask at most f failures using 2f + 1 replicas. With passage

of time however, the number of faulty replicas might exceed f . This can happen

if a dedicated attacker is able to compromise replicas one by one, and only asks

them to manifest faulty behavior when a sufficient number of replicas have been

compromised. If these compromises can go undetected by the IDSs, ByzID cannot

124

defend against such an attack. However, ByzID uses a proactive approach to prevent

too many servers from being corrupted simultaneously. For other attacks, it is clear

that our approach provides robustness.

Fairness Attacks. Fairness usually refers to the ability of every component to take

a step infinitely often. This is inappropriate for time-critical applications such as in

real-time transactional databases. For instance, in a stock system, a faulty primary

might collude with a client to help the latter gain unjust advantages. Our IDS aided

ByzID can achieve perfect fairness—ensuring that requests are executed in a “first

come, first served” manner. Aardvark [29] can achieve a certain level of fairness, but

does not achieve perfect fairness and is not suitable for time-critical applications. In

contrast, ByzID achieves perfect fairness by leveraging IDSs, and has a significant

performance advantage over Aardvark.

Flooding Attacks. We describe a flooding attack as one in which faulty replicas

might continuously send “meaningful but repeating” or “meaningless” messages to

other replicas. The goal of such attacks is to occupy the computational resources

that are supposed to execute the pre-determined operations. This type of attacks

is particularly harmful, as verifying the correctness of the cryptographic operations

is relatively expensive. Such attacks can largely impact the performance of all the

traditional BFT protocols. We take a number of countermeasures to defend against

such attacks. First, we do not adopt the traditional pairwise channels between every

replica pair. Instead, the primary forms the root of a tree, with backup replicas as

leafs directly connected to the root. In particular, backups does not communicate

with each other to prevent backups from flooding one another. Second, we use

the IDSs to prevent the primary from flooding messages other than the [Order]

messages to backups, and prevent the backups from flooding messages other than

125

[Ack] messages to the primary. Finally, we also use IDSs at backups to determine

if received messages are from clients or the primary. A backup IDS simply filters all

the incoming messages from the clients.

Timing Attacks (“Slow” Replica Attacks). We define timing failures, as the

situation when replicas produce correct results but deliver them outside of a speci-

fied time window. One or more compromised replicas might delay several operations

to degrade the performance of the system. For example, the primary can deliber-

ately delay the sending of ordering messages in response to client requests. It is

usually hard to distinguish such faulty replicas from slow replicas. It is also hard

to distinguish if the failures are due to faulty replicas or channel failures. We use

IDSs to monitor such kind of attacks. In particular, the timers can be setup by the

anomaly-based intrusion detection. IDSs only monitor the node processing delays,

not channel failures. Therefore, the monitoring can be accurate. Once the timer

exceeds the prescribed value, an IDS will trigger an alert.

5.7.3 IDS Crashes

The IDSs themselves are not resilient to crashes. So what if the IDSs crash? One

distinguishing advantage of ByzID is that it can still achieve safety (and liveness)

even if all the IDSs crash. Indeed, ByzID has the following two properties that other

BFT protocols relying on trusted components do not have: (1) Even if all IDSs

crash, as long as the primary is correct, safety is never compromised. (2) Even if all

IDSs crash, as long as all the replicas are correct, both safety and liveness are still

achieved. Clearly, ByzID cannot provide the same resilience against attacks without

the IDSs.

126

5.8 NFS Use Case

This section describes our evaluation of a BFT-NFS service implemented using

PBFT [18], Zyzzyva [69], and ByzID, respectively. The BFT-NFS service exports a

file system, which can then be mounted on a client machine. The replication library

and the NFS daemon are called when the replicas receive client requests. After repli-

cas process the client requests, replies are sent to the clients. The NFS daemon is

implemented using a fixed-size memory-mapped file.

0 20 40 60 80 100 120 140 time(s)

NFS-std

ByzID

ByzID †
Zyzzyva

Zyzzyva †
PBFT

PBFT †

130.76
136.28
135.29

141.05
157.34

148.02
147.56

Write(char) Write(block) Read(char) Read(block) DirOps

Figure 5.10. NFS evaluation with the Bonnie++ benchmark. The † symbol marks
experiments with failure.

We use the Bonnie++ benchmark [30] to compare the three implementations with

NFS-std, an unreplicated NFS V3 implementation, using an I/O intensive workload.

We evaluate the Bonnie++ benchmark with sequential input (including per-character

and block file reading), sequential output (including per-character and block file

writing), and the following directory operations (DirOps): (1) create files in numeric

order; (2) stat() files in the same order; (3) delete them in the same order; (4) create

files in an order that will appear random to the file system; (5) stat() random files;

(6) delete the files in random order. We measure the average latency when a single

client runs the benchmark, as shown in Fig. 5.10. The bar chart includes both the

127

fault-free case and the normal case where a backup failure occurs at time zero. We

observe that in both cases, ByzID implementation outperforms both PBFT and

Zyzzyva, and is only marginally slower than NFS-std.

5.9 Future Work

Relying on trusted IDS components, BFT protocol has been shown to both improve

the performance over existing solutions and handle performance attack. In a real

system, there are more ways IDSs can bring. For instance, we can use anomaly

detection mechanism to monitor the timing of replicas or the traces of replicas.

In addition, it is interesting to explore whether we could use BFT over IDS to

enhance the accuracy of existing IDS solutions. Other than this, assuming we have

independent IDSs that monitors the possibility of a server being intruded and a BFT

protocol that achieves consensus. We can build weighted BFT protocol [47], where

the weight of each server relies on the associated IDS.

5.10 Conclusion

We have shown a viable method to establish an efficient and robust BFT protocol

by leveraging specification-based intrusion detection. Our protocol leverages the key

assumption of a trusted reference monitor, but the approach we use is different from

other BFT approaches relying on trusted components in that we apply a simple IDS

monitoring and filtering technique. The reasons we use intrusion detection techniques

can be summarized as follows: (1) The IDS for our BFT protocol is very simple in

both code size and applicability—no heavy operations or cryptographic operations

involved, and therefore relatively easy to implement as a reference monitor. (2)

128

Although IDSs themselves are not resilient to crashes, we can still achieve a form

of safety even if all IDSs fail. (3) Equipped with IDSs, our BFT protocol is more

robust against a number of important attacks. (4) Our IDS-aided ByzID protocol is

also more efficient than other BFT protocols. Indeed, our experimental evaluation

shows that ByzID is only marginally slower than Paxos.

129

Chapter 6

P2S: A Fault-Tolerant

Publish/Subscribe Infrastructure

The work presented in this chapter was first described in an earlier paper by Chang,

Duan, et al. [24]. The popular publish/subscribe communication paradigm, for build-

ing large-scale distributed event notification systems, has attracted attention from

both academia and industry due to its performance and scalability characteristics.

While ordinary “web surfers” typically are not aware of minor packet loss, industrial

applications often have tight timing constraints and require rigorous fault tolerance.

Some past research has addressed the need to tolerate node crashes and link fail-

ures, often relying on distributing the brokers on an overlay network. However,

these solutions impose significant complexity both in terms of implementation and

deployment.

In this chapter, we present a crash tolerant Paxos-based pub/sub (P2S) middle-

ware. P2S contributes a practical solution by replicating the broker in a replicated

architecture based on Goxos, a Paxos-based fault tolerance library. Goxos can switch

between various Paxos variants according to different fault tolerance requirements.

130

P2S directly adapts existing fault tolerance techniques to pub/sub, with the aim of

reducing the burden of proving the correctness of the implementation. Furthermore,

P2S is a development framework that provides sophisticated generic programming

interfaces for building various types of pub/sub applications. The flexibility and

versatility of the P2S framework ensures that pub/sub systems with widely varying

dependability needs can be developed quickly. We evaluate the performance of our

implementation using event logs obtained from a real deployment at an IPTV cable

provider. Our evaluation results show that P2S reduces throughput by as little as

1.25% and adds only 0.58 ms latency overhead, compared to its non-replicated coun-

terpart. The performance characteristics of P2S prove the feasibility and utility of

our framework.

6.1 Introduction

Significant effort has been devoted to developing reliable pub/sub systems [13,20,43,

59, 64, 65, 94, 104, 120]. Most of them cope with broker crashes and/or link failures,

ensuring that messages are eventually delivered. While the weak fault tolerance is

sufficient in some systems, other application domains demand stringent delivery order

of their messages. Only a handful of prior published research papers have discussed

how to achieve total ordering in reliable pub/sub systems [64, 65, 120]. In order to

guarantee total ordering in the presence of failures, virtually all past published work

relies on an overlay network topology. For each new type of topology, a different

algorithm must be introduced, adding significant complexity both in terms of al-

gorithm correctness proofs, implementation, and deployment. Therefore, industrial

deployments tend to rely on the more established centralized architecture instead of

decentralized overlay topologies.

131

Traditional fault tolerance techniques based on Paxos [73] can provide total or-

dering and guarantee safety even in the presence of any number of failures. However,

liveness cannot be ensured in periods of asynchrony. Building a reliable pub/sub sys-

tem based on an existing, proven approach, reduces the effort required to prove the

correctness of algorithms since the protocol can be proven correct by refinement from

the original algorithm. However, adapting traditional fault tolerance techniques to

pub/sub systems is challenging. Intuitively, every broker can be replicated, which can

be extremely impractical. Total ordering on every message can be overkill since dif-

ferent messages may require different ordering semantics. For instance, per-publisher

total ordering is sufficient for publications from a single publisher to multiple sub-

scribers. On the other hand, the topology of brokers in pub/sub systems varies from

a single centralized broker to very large-scale overlays. Replication of brokers may

impose adjustment of pub/sub overlays, especially when the brokers are replicated on

demand. Therefore, management of replication should impose minimum overhead.

In this chapter, we propose a framework for building reliable pub/sub systems

that directly adapts existing fault tolerance techniques to pub/sub. At the core

of our pub/sub infrastructure is our crash fault tolerance library and a pub/sub

interface. Our library guarantees fault tolerance through replication, and ensures

strong consistency using Paxos to order publications. Our fault tolerance library can

switch between different consistency protocols depending on application specific fault

tolerance requirements. On the other hand, the pub/sub interface communicates

between application level roles (publishers, subscribers, and the brokers) and the

replication library. The interface takes publications that must be totally ordered,

and pass them on to the replication library as requests and totally orders them. The

messages are then delivered to the corresponding subscribers in order.

We have designed P2S, a topic-based crash tolerant pub/sub system based on a

132

replication library Goxos [60,79], a Paxos-based Replicated State Machine (RSM) [101]

framework written in the Go programming language [51]. P2S is motivated by the

simplest pub/sub architecture that is employed in several industry settings: pub-

lishers and subscribers with only a centralized broker. Since the centralized broker

becomes a single point of failure, we replicate the broker to achieve resilience. To

ensure total ordering, a Paxos-based library is run among the replicated brokers.

Although we adopt the architecture of P2S directly from existing fault tolerance

protocols, we are not aware of any other published work discussing the implementa-

tion of such solutions and therefore the performance characteristics have previously

not been explored and published. We further evaluate the performance of P2S us-

ing recorded event logs obtained from a real deployment of event loggers at about

180,000 homes connected to an IPTV cable provider. Our evaluation results show

that P2S causes as low as 1.25% reduction in throughput and only 0.58 ms end-to-end

latency overhead compared to its non-replicated counterpart.

Our chapter makes the following key contributions:

1. We implemented P2S, the simplest architecture based on the framework, a

topic-based crash tolerant pub/sub system with centralized replicated brokers.

2. We demonstrate the utility of P2S through experiments using recorded data

logs obtained from an industrial centralized IPTV application deployed at a

national telco operator. The evaluation results show that P2S achieves total

ordering in the presence of failure with low overhead compared to its non-

replicated overhead.

3. We present a framework for building reliable pub/sub systems that directly

adapts existing proven secure fault tolerance approaches, with a relatively sim-

ple correctness proof and implementation. The framework is flexible and ver-

satile enough to be used in future development.

133

The rest of the chapter is organized as follows: first, we introduce some back-

ground of our work in §6.2. In §6.3, we describe the design and development details

of our framework. Then we show experimental results in §6.4. We conclude by

reviewing our contributions in §6.6.

6.2 Background

In this section we present background for our fault-tolerant pub/sub system, P2S.

We begin by introducing Paxos, a well-known crash fault-tolerant consensus protocol

on which we base P2S. We then briefly summarize the pub/sub architecture on which

we base P2S.

6.2.1 Fault Tolerance

0

1

2

ACCEPT LEARN

(a) The normal-case operation

0

1

2

PREPARE
PROMISE

ACCEPT

(b) Paxos leader/proposer change

Figure 6.1. The Paxos Protocol.

The Paxos protocol is a fault-tolerant consensus protocol, in which a set of par-

ticipants (our replicas) try to reach agreement on a value. For our purpose, we can

use multiple instances of Paxos to agree on a sequence of values (or commands) sent

134

to an RSM. This is also called Multi-Paxos. With Paxos, the participants can reach

agreement when at least f + 1 of the participants are able to communicate, where f

is the number of replica failures that can be tolerated. One of the nice properties of

Paxos is that it guarantees that consistency among the replicas will never be violated

even if more than f replicas fail. It achieves this property at the expense of liveness.

That is, if more than f replicas fail, or if fewer than f + 1 replicas are able to com-

municate, then Paxos cannot make progress. Ensuring strong consistency among

replicas is an important property, useful for a wide range of systems, including pub-

/sub systems. This is related to the fundamental tradeoff between strong and weak

consistency.

We now explain how one instance of Paxos might operate in the pub/sub paradigm.

First suppose that the participants must be made to agree on a single value or com-

mand to execute on our broker RSM. This command can be considered as a publi-

cation. Thus, the following is concerned with only a single command/publication.

Paxos is often explained in terms of two phases, where the first phase is only invoked

initially and to handle failures, while the second phase represents the normal case

operation, and must be performed for every value to be agreed upon.

Paxos proceeds in rounds, where in each round there is a single replica designated

as the proposer, also called the leader. Fig. 6.1(a) depicts the normal case operation

where the proposer is correct. During the normal case operation, the proposer chooses

a value and sends an Accept message to a set of replicas called acceptors. If an

acceptor accepts the value, it sends an Learn message to all the replicas. The value

is chosen when a replica receives Learn messages from a majority of replicas.

When the current proposer is suspected to be faulty, another replica may assume

the role of proposer. To be effective as proposer, it needs to collect support from a

majority of the replicas. It does so by broadcasting a Prepare message to the other

135

replicas. Upon receiving the Prepare message, a replica stops accepting messages

from the old proposer and replies to the new proposer with a Promise message,

and includes the value chosen in its last round. When the leader collects a set of

Promise messages from a majority of replicas, it either selects a value if at least one

replica accepts it, or any value, if no replica includes any values in their Promise

messages. Afterwards, replicas proceed as in normal case operation described above.

Fig. 6.1(b) shows the leader change phase of Paxos.

6.2.2 Pub/Sub

We build on the pub/sub architecture described by Eugster et al. [44], as illustrated

in Fig. 6.2. In a topic-based pub/sub system, subscribers express their interests in

certain types of events, and are subsequently notified with publications, generated

by publishers. Brokers are placed at the center of the infrastructure to mediate

communication between publishers and subscribers. This event-based interaction

provides full decoupling in time, space, and synchronization between publishers and

subscribers. We assume topic-based pub/sub [44], where messages are published to

topics, and subscribers receive all messages sent to the topics to which they subscribe.

Publisher

Publisher

Routing
Table

Subscriber

Subscriber

Subscriber

SubscriberBrokers

Publish()

Notify()

Subscribe()

Unsubscribe()
Publisher

Publisher
Update()

Filter()

Figure 6.2. Publish/Subscribe architecture with three agent roles

136

In this chapter, we address broker crash failures in an asynchronous model, where

messages can be delayed, duplicated, dropped, or delivered out of order. P2S employs

a simple pub/sub architecture: between publishers and subscribers is a set of 2f + 1

replicated brokers, among which up to f broker failures are tolerated. The repli-

cated brokers can be in one or more administrative domains, perhaps geographically

separated.

The protocol provides both safety and liveness as defined below. The safety

property is also referred to as total order, which is defined in multiple ways in the

pub/sub literature. For instance, per-publisher total order ensures that messages

sent by a single publisher are totally ordered. Our system aims to achieve the

strongest safety properties—pairwise total order—where replicated brokers behave

like a centralized broker.

• (Pairwise total order (Safety)) Assume messages m and m′ are delivered

to both subscribers p and q, m is delivered before m′ at p if and only if m is

delivered before m′ at q.

• (Liveness) If a message is delivered to a subscriber, all correct subscribers to

the same topic eventually receive the same message.

6.3 P2S

Our P2S framework is built on our existing Paxos-based RSM library, Goxos [60,61,

79]. For higher level pub/sub application builders, P2S provides a generic program-

ming interface.

This section introduces details of the original Goxos implementation, along with

changes we make to adapt Goxos to the pub/sub model, the P2S system architect,

programming APIs, some application implementation details, and the core broker

137

algorithm that runs inside each P2S broker. Essentially, when messages are sent by

clients (either publishers or subscribers) to brokers, they are handled by the Goxos

library. Goxos treats client messages as Paxos requests, orders them accordingly,

and delivers them to the upper level. The messages are then forwarded to the

corresponding publishers or subscribers according to the message type.

6.3.1 Goxos Architecture and Implementation

Goxos provides a fault-tolerant library for P2S. Namely, P2S implements Goxos

interfaces to replicate its broker. When no more than f brokers fail, all failures

are handled internally in the underlying Goxos framework in the way that Paxos

originally describes and will not be noticed by publishers or subscribers. Thus, Goxos

provides a great degree of crash fault tolerancee to the above pub/sub system.

In our original implementation [60, 61, 79], Goxos replicas act as the replicated

brokers, out of which only one replica is the leader to handle client requests. A client,

either a publisher or a subscriber, first reads a predefined configuration file and finds

the Goxos replicas, then dials the leader. The leader receives this client’s connection

attempt, then establishes the connection, and stores the client connection for further

interactions. The client then is able to send request to either issue a publication, a

subscription, or unsubscription to the leader. Upon receiving a valid client request,

the leader treats the raw request as a Paxos proposal and disseminates it across all

Goxos replicas to achieve consensus. Each replica decides on a request and then

executes it. Then finally, the execution result is replied back to the client.

This original implementation does not fit the pub/sub model because it acts

strictly in the passive request-then-response style. This means it lacks the logic to

handle proactive message delivery. We therefore alter Goxos so when a broker replica

138

executes a client request, it retrospects the message type. If it is a subscription or

unsubscription, the replica will scan and update the local subscription table. If it is a

publication, the replica will deliver the publication to each of the subscribed clients.

Details are given in Section 6.3.4.

Paxos Module Proposer Acceptor Learner

Network Module Demuxer Sender

Network

Liveness Module LD FD HB Emitter

Replicated Servers

Figure 6.3. Goxos Architecture [61].

Fig. 6.3 shows the main modules of Goxos, which we organize into three parts:

first, the Paxos module, which includes the complete Paxos protocol. Second, the

Network module, which handles all networking in Goxos. The Network module

contains a Demuxer and a Sender as submodules. The Demuxer handles all incoming

connections and relays received messages to the local replica’s correct Paxos module

for further processing. The Sender module is responsible for sending messages to

other replicas as requested by Goxos. These two modules, taken together, emulate

remote channels between Goxos agents. Finally, the Liveness module, which handles

the failure detection and leader election necessary for Paxos. The three different

modules communicate with each other through Go’s channels. In the figure, a single-

ended arrow pointing from a source module to a destination module signifies that

the source can send a message to the destination over a one-way channel. A double-

139

ended arrow signifies that both modules can send and receive to one another over a

two-way channel. For example, the Demuxer module sends messages to the proposer,

acceptor, and learner (which are in the Paxos module). Since Paxos itself must be

able to handle many concurrent activities, the liveness module, network module, and

Paxos module are all implemented as concurrently executing goroutines. Goxos lies

as the core of replicated servers, as we will show in Fig. 6.5 in the next section.

As a base framework for building fault-tolerant services, Goxos offers sophisti-

cated user interfaces for higher level applications to invoke. Fig. 6.4 shows four main

interfaces available to application developers.

type Handler interface {

Execute(req []byte) (resp []byte)

GetState(slotMarker uint) (sm uint, state []byte)

SetState(state []byte) error

}

func NewGoxosReplica(uint, uint, string, app.Handler) *Goxos

func Dial() (*Conn, error)

func (c *Conn) SendRequest(req []byte) ([]byte, error)

Figure 6.4. Goxos interface.

Server applications can create a replicated service with the

GX.NewGXReplica function. This will construct a new replica. The first two argu-

ments of NewGXReplica are the id of the replica and the id of the application. The

third argument is a string describing the application. Finally, the last argument is a

type that implements the app.Handler interface. The app.Handler interface must

be implemented by an application that uses the replication library. This interface

defines several methods that must be implemented on the type: Execute, GetState

140

and SetState. The first method, Execute, takes a byte slice, which should be a

command that can be executed in the application. The Execute method also re-

turns a response from the application in the form of a byte slice. The second and

third methods, GetState and SetState, are used for live replica replacement.

The client library for Goxos is used to connect to the Paxos replicas, as well as

to send and receive responses. The client connection can be created with the Dial

method in the library. This method returns a Conn, representing a connection to

the whole replicated service. All of the work of handshaking with the servers and

identifying the leader is abstracted away. The most useful method on a Conn is

SendRequest, which can be used to send requests to the service. The client request

is a byte slice, meaning that if the application wants to send Go structs or other

complex types as commands to the service, it must marshal them into byte form.

Similarly, the return value is also a byte slice, which represents the response from the

service. This also means that a client must wait for a response from Goxos servers

before it can send any further requests.

6.3.2 System Architecture and API

P2S, as a fault-tolerant pub/sub service, is comprised of a client library, a repli-

cated server cluster with Goxos library as the core, and a client handler deployed

at servers. The client handler is deployed at the servers and receives messages from

client applications (publishers and subscribers). The client library is used by client

applications to communicate between the client handler and the replicated service.

The replicated server cluster handles all incoming client requests via the client han-

dler, replicates brokers, and orders requests to achieve total order in the presence

of failures. Finally, the server application executes client requests ordered by the

141

Publisher Subscriber

P2S Client Library P2S Client Library

P2S Client Handler

P2S Replicated Server Cluster

P2S Server Application (Broker)

Publish SubscribeAck Notify

ResponseConnect

Filter
Publish

Notification

Figure 6.5. P2S System Architecture.

cluster. Fig. 6.5 shows an abstraction of the P2S architecture.

P2S client library offers standard pub/sub style applications a set of client

APIs. The client library communicates with servers, sends out client requests (which

can be publications, subscriptions, or unsubscriptions), and receives corresponding

responses for the client application to interpret. As shown in Fig. 6.6, the library

defines a pair of data structures that applications must use, two standard interfaces,

and several methods.

Request and Response define the data format that client applications must use.

Ct in Request and ToType in Response represent the command type, which is ’Pub-

lish’, ’Subscribe’, or ’Unsubscribe’. Cid in Request denotes the client ID, which is

used by servers as a key to identify the corresponding client connection. Topic and

Content represent publications and subscriptions. Lastly, Subs in Response is an

array of subscribers’ ID that is filtered by the servers for publication delivery.

The interface PublicationManager is implemented by a publisher’s application.

Publish calls are used by the application to issue a publication. Publish takes two

142

type Request struct {

Ct CommandType

Cid string

Topic string

Content string

}

type Response struct {

ToType CommandType

Ack string

Topic string

Content string

Subs []string

}

type PublicationManager interface {

Publish(topic, content string)

}

type SubscriptionManager interface {

Subscribe(topic string) chan []string

Unsubscribe(topic string)

}

func PDial(account string) PublicationManager

func SDial(account string) SubscriptionManager

func (sm *submngr) awaitPublications(notifyChan chan []string)

Figure 6.6. P2S Client Library.

arguments as input: the topic and content of the publication. Similarly, the interface

SubscriptionManager is implemented by a subscriber’s application. This interface

has two methods, Subscribe and Unsubscribe, both taking a string of topic as

an argument. The Subscribe returns a Go string slice channel. This channel is

used by the method awaitPublications, which is for a client to wait for delivered

publications to the topic that the Subscribe method issues.

143

Both PDail and SDial are called when an application initiates. They return

instances of PublicationManager and SubscriptionManager, respectively, that the

application later invokes.

The P2S client handler is initiated on server startup. The Client handler is the

frontend of the replicated server cluster, handling client calls. It receives connection

attempts from clients, stores client requests (a publication or subscription), passes

the request to the backend P2S server application to filter, and receives the processed

result, and finally sends back the response to related clients. The processed result

has two types: either an acknowledgement to a publisher or a filtered publication to

interested subscribers. Fig. 6.7 shows a set of functions in the client handler library.

func (ch *ClientHandler) greetClient(conn net.Conn)

func (ch *ClientHandler) handleRequest(req *Request)

func (ch *ClientHandler) handleResponse(resp *Response)

Figure 6.7. P2S Client Handler.

The greetClient function starts up an infinite loop waiting for potential client

connection attempts. It responds to the Dial method the client calls, identifies the

client address and ID, then stores the client connection object in a local connection

pool.

The handleRequest function receives client requests, checks each request to see

if it has been executed before, generates a response for new request, and stores both

the request and response.

The handleResponse function is called immediately after a response is generated

by the handleRequest method. handleResponse first loops the client connection

pool, identifies the client that sent the request, then pushes back the response to

the client. The handleResponse function then introspects the request type. If the

144

request is a publication, handleResponse initiates the filtering, finds the subscribers

that are interested in the topic in the client connection pool, and delivers the publi-

cation to all the subscribers.

The P2S replicated server cluster is the service with our modified Goxos

framework as the core. It does not differentiate client message types. It simply

treats each client message as a Paxos proposal and executes through the consensus

protocol. It then passes the client message to backend server application to interpret.

6.3.3 ZapViewers Application

In order to evaluate the capabilities of P2S, we built a fault tolerant TV viewer

statistics application based on an existing centralized (non-replicated) pub/sub sys-

tem deployed at a real IPTV operator. We refer to this as our ZapViewers applica-

tion. In our evaluation, we use recorded event logs from the real deployment.

A high-level architecture of our ZapViewers application is shown in Fig. 6.9. The

application consists of three parts: event publishers (set-top boxes), subscribers

(clients interested in viewership statistics), and a replicated broker. A P2S event

publisher simulates a fraction (around 180,000) of IPTV set-top boxes (STBs) de-

ployed at customer homes receiving IPTV over a multicast stream. Each STB records

viewers’ TV channel change information, and sends the event to the IPTV operator’s

server. The publisher accomplishes this simply by calling our Publish() method.

Based on these events, the broker computes the TV viewership.

A P2S subscriber can either be television broadcasters or commercial entities in-

terested in TV viewership statistics. Such a subscriber is usually concerned about

ratings of TV channels, and viewers’ channel change behavior. The subscriber that

we implemented informs the server of its interested topics, such as top-N most viewed

145

TV channels or viewership of some specific channels. The broker then notifies each

subscriber of the corresponding statistics. The subscriber calls our standard Sub-

scribe() method to inform the brokers of their interest.

P2S brokers are replicated server applications that function as fault-tolerant bro-

kers to external event publishers and subscribers. P2S brokers rely on the Goxos

framework as their core by implementing system APIs such as the Handler interface

as described in previous sections. The brokers implement several functions to collect

events and computes statistics, including the two shown in Fig. 6.8.

func numViewers(channel string) int

func computeTopList(n int) []*zl.ChannelViewers

Figure 6.8. ZapViewers application interface.

Function call numViewers(channel string) takes a channel name as input from

a P2S subscriber and returns that channel’s viewership information. Function call

computeTopList(n int) returns a list of the n most viewed channels at a particular

instant to the subscriber.

The P2S publisher can generate two event types as follows:

〈Date, Time, STB-IP, ToCh, FromCh〉

〈Date, Time, STB-IP, Status〉

Date and Time mark the date and timestamp that the event is triggered. STB-

IP is the IPv4 address of the sending STB unit. ToCh and FromCh indicate the

new channel and the previous channel that the STB unit is tuned in on. Status is

a change in status of the STB, which is either volume change on a scale of 0–100,

mute/unmute, or power on/off. The event is encoded in text format, and its size is

typically less than 60 bytes.

Events have either 4 or 5 fields. An event with 5 fields represents a TV channel

146

STB ... STB

P2S Event Publisher

... STB ... STB

P2S Event Publisher

P2S Brokers

P2S

subscriber

P2S

subscriber

P2S

subscriber

Figure 6.9. ZapViewers Application Architecture.

change event, and such an event does not contain Status. An event with 4 fields

contains a Status in the 4th field, but does not have the fields ToCh or FromCh.

6.3.4 Broker Algorithm

The core of our P2S application is the replicated service provider, the broker. A

broker does a handful of back-end jobs, including maintaining subscriptions, storing

P2S events as publications, filtering and matching, and delivering publications to

subscribers. We depict the essential broker algorithm as follows.

Brokers maintain the following key variables: the subscription table ST, the

channel for piping requests (subscriptions and publications) ReqChan, the channel

for piping responses (acknowledgements and to-deliver publications) RespChan,

the channel for sending proposals to the Paxos variant PropChan, the queue of

replies R, the Paxos variant in use Paxos, and two message types for introspection

Publication and Subscription.

147

When a broker starts up, it initializes several routines: monitoring the request

channel ReqChan, the response channel RespChan, and the proposer channel

PropChan. When a broker receives a new client request, it invokes the han-

dleRequest(req) method. The handleRequest(req) function call first checks

if itself is the current Paxos leader. If not, it checks whether the Paxos variant in

use permits direct message routing between non-leader replicas and the client. Ful-

filling either of the two conditions means that the request is handled immediately.

Otherwise, the broker redirects the request to the Paxos leader.

The broker checks if the request is a new one. If so, it sends the request to the

proposer channel PropChan and let Paxos executes it. If it is an old request, it

simply finds the response in the reply queue by R.find(req), and ack() the client

once more.

When a request is sent into the proposer channel, the broker invokes operation

executePaxos(prop) and the request is executed through Paxos. The execution

result generated by genResp(prop) is sent into the response channel RespChan

immediately. In addition, the broker introspects the message type and if it is a

subscription, the broker updates the subscription table ST.

On detecting a new response from channel RespChan, the broker calls han-

dleResponse(resp). The broker adds the response to the reply queue R, and

ack(resp) back to the client. This means the broker introspects the message type

and if it is a publication, the broker travers the client connection pool, filters out the

subscriber by checking the subscription table filter(ST), and finally delivers to all

the subscribers to the topic.

Each valid client request is executed through the whole cycle and the broker is

capable of executing multiple concurrent requests. This is enabled by the Paxos

variant in use. Our Goxos framework provides Multi Paxos [74], Batch Paxos [74]

148

and Fast Paxos [75] for the time being. In our P2S application, we use Multi Paxos

with 3 concurrent batched executions at a time. We further describe the evaluation

in §6.4.

6.4 Evaluations

In this section, we evaluate both our ZapViewers application with different replication

degrees and the original non-replicated version. We evaluate end-to-end latency,

throughput, and scalability under different settings.

6.4.1 Experiment Setup

All experiments are carried out in our computing cluster composed of GNU/Linux

CentOS 6.3 machines connected via Gigabit Ethernet. Each machine is equipped

with a quad-core 2.13GHz Intel Xeon E5606 processor with 16GB RAM.

For our experiments, we obtained recorded event logs from a real commercial

IPTV provider. The experiments are carried out using 1, 3, 5, and 7 broker replicas.

The experiments using only 1 broker are our baseline, as they represent the non-

replicated ZapViewers application. The experiments using 3–7 broker replicas allows

our system to tolerate 1–3 crash failures. We use up to 24 event publishers, with

each event publisher simulating 180,000 STBs, and a small number of subscribers.

In the real deployment, each STB caches local channel changes for channels with

retention longer than 3 seconds. These cached events are sent to the server every

10 seconds. Indeed, the number of the event publishers (STBs) is typically large,

while the number of the IPTV viewership statistic subscribers (e.g., TV broadcasters

and other commercial entities) is relatively small. However, while the event volume

149

produced by each STB is relatively low, the aggregate becomes significant.

In all experiments, we use pipelined Multi Paxos [74] with α = 10. That is,

ten distinct Paxos instances can be decided concurrently. Even though they are

decided concurrently, their processing takes place sequentially. Each Paxos instance

comprises a batch of STB events to be processed by the broker replicas in sequence.

6.4.2 End-to-End Latency

We first assess the end-to-end latency. Herein, we define end-to-end latency as the

duration between the sending of an event and the corresponding receive at an active

subscriber. The latter is inferred from the notification corresponding to the source

event. For calculating end-to-end latency, we record a timestamp when a publication

is issued by a publisher, and this timestamp is kept by brokers in the execution result

that is delivered to any subscriber. The subscriber is therefore able to calculate the

latency by comparing the original publisher’s timestamp and local time.

Fig. 6.10 shows the latency of our ZapViewers application in different configura-

tions, namely non-replicated, with 3, 5, and 7 replicas, each tolerating 0, 1, 2, and 3

crash failures, respectively. We observe an increase of end-to-end latency in all four

experiments as we increase the number of P2S event publishers. We vary the number

of publishers from 1 to 24.

The latency of the original non-replicated ZapViewers application varies from

1.98 ms under light load up to 2.32 ms under high load. As expected, all experiments

with our replicated ZapViewers implementation show higher latencies than the non-

replicated version. That is, we observe an overhead of 0.58 ms (29%) under light

load, and 1.23 ms (49%) under high load. Still, from our subscribers’ point of view,

this latency overhead is barely noticeable.

150

1 3 6 12 24

0.8
1

1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3
3.2
3.4
3.6
3.8

Number of P2S Event Publishers

E
n

d
-t

o-
E

n
d

L
at

en
cy

(m
s)

NR P2S (3) P2S (5) P2S (7)

Figure 6.10. End-to-end latency for various numbers of publishers

Also as expected, the latency gradually increases as the number of publishers

increases. Since we pipeline events using the Goxos library, the latency increase is

small. For the non-replicated broker, the latency overhead of accommodating 24

publishers instead of just 1 corresponds to 0.34 ms (17%). In comparison, with 3, 5,

and 7 brokers, latencies are 0.69 ms (26%), 0.81 ms (30%), and 0.78 ms (28%) higher

when the number of concurrent P2S event publishers grows from 1 to 24.

We also see that higher replication degrees (indicated by the different bars in

Fig. 6.10), imposes only marginal latency overhead.

6.4.3 Broker Throughput

We assess the broker throughput for the same configurations as in our latency eval-

uation, as shown in Fig. 6.11. We define broker throughput as the number of publi-

151

cation batches that are processed by the broker per second. We run experiments in

a pipeline manner, with ten distinct instances decided concurrently.

We first observe that for small workloads, all experiments achieve almost identical

throughput. With fewer than 6 publishers, the throughput reduction is less than 6%

between non-replicated broker and the 7-replica broker.

−2 0 2 4 6 8 10 12 14 16 18 20 22 24 26

0

10

20

30

40

50

60

70

80

90

Number of P2S Event Publishers

T
h

ro
u

gh
p

u
t

(p
u

b
li

ca
ti

o
n

s/
se

c)

NR

P2S (3)

P2S (5)

P2S (7)

Figure 6.11. Broker throughput for varying number of publishers.

When the number of publishers is higher than 5, the non-replicated application

achieves slightly higher throughput than its replicated counterparts. The through-

put drops as little as 4.58% compared to the non-replicated application. As shown

in Fig. 6.11, the peak throughput of the original non-replicated application, when

there are 24 publishers, is 90.00 publications per second. In comparison, the peak

throughput with 3, 5, and 7 replicas are 80.04, 77.25, and 75.03 publications per

second, which are 9.96%, 14.16%, and 16.63% lower than non-replicated service,

respectively.

Higher replication degree results in consistently lower throughput. Similarly to

152

latency, the overhead caused by this is 6.5% on average. This is explained by the

fact that in Paxos, higher replication degree does not cause significant performance

degradation.

6.4.4 Scalability

We evaluate the scalability of our ZapViewers application by varying both replication

degrees and the number of event publishers.

Table 6.1 presents the latency and throughput degradation of ZapViewers when

replication degree varies. We compare each instance with a counterpart that has

one replication degree lower. As shown in the table, the non-replicated application

outperforms all replicated counterparts. With only 1 publisher, the latency of the

non-replicated application is 29.9% higher than that of P2S (3). With 24 event

publishers, it is 40.08% higher. However, latency drop becomes less noticeable as

the replication degree increases. For instance, with 1 publisher, latency of P2S (5) is

3.51% lower than that of P2S (3). With 24 event publishers, it is only 6.46% lower.

Throughput decreases slower on the other hand. When the workload is fairly

low, with fewer than 3 event publishers, the difference is barely detectable. The

non-replicated application is 11.11% higher than P2S (3). With higher replication

degree, throughput varies between 2.91% and 3.43%.

We also compare the performance change for replication degree when the number

of P2S event publishers varies, as shown in Table 6.2. For each application, latency

rises with more event publishers. With high replication degree, the latency gradually

becomes stable, approaching the peak latency when the number of P2S event pub-

lishers is more than 12. When the number of event publishers is greater, the latency

decreases much slower, thereafter.

153

Table 6.1. Latency (upper table) and throughput (lower table) drop of ZapView-
ers, compared to the counterpart that has one replication degree lower. #p is the
number of publishers.

#p = 1 #p = 3 #p = 6 #p = 12 #p = 24

P2S (3) 29.29% 33.1% 38.30% 41.12% 40.08%

P2S (5) 3.51% 1.88% 3.59% 6.95% 6.46%

P2S (7) 4.52% 5.18% 1.38% 4.95% 2.60%

P2S (3) 2.50% 1.25% 4.58% 5.71% 11.11%

P2S (5) 0.00% 0.00% 4.80% 5.68% 3.43%

P2S (7) 0.00% 0.00% 4.12% 3.61% 2.91%

This trend is consistent with the improvement of throughput when the number

of event publishers differs. As shown in the table, under low workload, throughput

improves almost linearly. When there are more than 6 event publishers, the in-

crease becomes gradually slower. For instance, from 6–12 event publishers, P2S (7)

throughput grows 14.83%, or 2.47% per publisher. Also from 12–24 event publishers,

growth is 25%, or 2.08% per publisher. This indicates the brokers have almost the

maximum processing rate.

To summarize, P2S scales very well when the replication degree and the number

of event publishers increases. This demonstrates that our system can retain its

efficiency even when we build a system that can tolerate more failures.

6.5 Future Work

As a illustration of a framework, P2S is shown to achieve great performance. In a

complete system, we could further rely on and explore the framework in the future.

154

Table 6.2. Latency drop (upper table) and throughput rise (lower table) of Za-
pViewers, compared with its own performance when p differs. Values with paren-
thesis in red represent positive improvement. The number of publishers is denoted
by #p.

#p1− 3 #p3− 6 #p6− 12 #p12− 24

NR 0.50% 1.00% 6.46% 8.41%

P2S (3) 3.51% 4.90% 8.63% 7.61%

P2S (5) 1.89% 6.66% 12.15% 7.12%

P2S (7) 2.52% 2.81% 16.09% 4.71%

NR (200.00%) (100.00%) (16.66%) (28.57%)

P2S (3) (205.12%) (92.43%) (15.28%) (21.21%)

P2S (5) (205.12%) (83.19%) (14.22%) (24.09%)

P2S (7) (205.12%) (75.63%) (14.83%) (25.00%)

For instance, we could build a system with different ordering properties. For certain

type of messages where total order is necessary, we use a Paxos or even stronger

library. For other type of message where the order is not important, we use the

traditional pub/sub communication.

6.6 Conclusion

This chapter presents P2S, a simple fault-tolerant pub/sub solution that replicates

brokers in a central pub/sub architecture. Our solution fits naturally in many indus-

trial settings that need certain resilience, without having to rely on complex, overlay

networks.

We have shown how our P2S framework adopts traditional fault tolerant proto-

155

cols to the pub/sub communication paradigm. P2S provides sophisticated generic

programming interfaces for higher level pub/sub application builders, and is built

upon our Paxos-based, fault-tolerant Goxos library. Goxos switches between various

Paxos variants according to different fault tolerance requirements. The flexibility

and versatility of the P2S framework aims to minimize the effort required for future

development of any pub/sub systems with various resilience needs.

Our results, evaluated based on recorded data logs obtained from a real IPTV

service provider, indicate that P2S is capable of providing reliability at low cost.

With a minimum degree of replication, P2S imposes low performance overhead when

compared to the original non-replicated counterpart.

In future work, we aim to experiment with the P2S framework on Byzantine

failure models. We believe that there is a need for Byzantine fault tolerance in

certain industrial applications, and believe our work can be extended to adapt to

BFT as well.

156

Algorithm 10 Broker Algorithm

1: Initialization:

2: ST {Subscription Table}

3: ReqChan {Request Channel}

4: RespChan {Response Channel}

5: PropChan {Proposer Channel}

6: R {Reply Queue}

7: Paxos {Paxos Variant}

8: P {Message Type: Publication}

9: S {Message Type: Subscription}

10: on event req ← ReqChan {Monitor Request Channel}

11: handleRequest(req)

12: on event resp← RespChan {Monitor Response Channel}

13: handleResponse(resp)

14: on event prop← PropChan {Monitor Proposer Channel}

15: executePaxos(prop)

16: on event executePaxos(prop) {Execute Through Paxos}

17: RespChan← genResp(prop)

18: if prop.Type == S then

19: update(ST) {Update Subscription Table}

20: on event handleRequest(req)

21: if nid == leader or allowDirect[Paxos] then

22: if req is new then

23: PropChan← req {Send into Paxos Module}

24: else ack(R.f ind(req)) {Re-reply Old Request}

25: else redirect(req) {Redirect To Leader}

157

1: on event handleResponse(resp)

2: R.add(resp)

3: ack(resp) {Acknowledgement}

4: if resp.Type == P then {Invoke Publication Delivery}

5: C = filter(ST) {Filter And Match}

6: deliver(C, resp) {Deliver Publication}

158

Chapter 7

Comparison

In the previous chapters we describe three BFT protocols, hBFT, BChain, ByzID,

and a Paxos-based pub/sub infrastructure P2S. P2S can be viewed as an applica-

tion of fault tolerance protocols. As discussed in Chapter 1, the three protocols take

different approaches to enhance performance, such as moving jobs to clients, using

partially connected graphs, using trusted components, etc. In this chapter, we com-

pare the performance of the three BFT protocols, and then discuss P2S as well as

other applications of fault tolerance.

Table 7.1. Best use case of the protocols. ‖Performance attack refers to the attack
where faulty replicas intentionally render the overall performance low, usually by
manipulating the timers.

Protocols Best Use Case

hBFT High rate of client and replica failures

BChain High concurrency; Small number of replicas; Lower rate of replica failures

ByzID High rate of performance attack‖; Highly scalable systems

Failure-free Case Performance As shown in Table 7.2, all three protocols enhance

159

the performance in comparison to existing state-of-the art protocols. Although the

experiments were carried out separately when each protocol was designed, under

similar but different settings, we could still compare the overall performance. As

can be observed in Table 7.2, the number of cryptographic operations is directly

related to the throughput. The experimental results validate the theoretical results.

When the number of clients is large enough, the number of cryptographic operations

of BChain approaches 1 while the other two all tend to 2. Therefore, the peak

throughput of BChain is higher. However, when the number of clients is low, the

other two both achieve higher throughput. Since ByzID relies on a trusted IDS, and

the IDS components cause very little overhead, it does not require encryption on

messages between the primary and backup and the crypto operations of the primary

is 2. Therefore, it outperforms hBFT.

Normal Case Performance In hBFT, we define normal case as a situation where

the primary is correct and at least one replica is faulty. It is implicitly true that

fewer than f replicas are faulty and they are all backups. As can be observed in

Table 7.2, hBFT enhances the performance in both the failure-free case and normal

case. For instance, the bottleneck server of Zyzzyva (4 + 5f + 3f
b

) performs 1.2 times

more MAC operations than PBFT(2+ 8f
b

) and 2.4 times more MAC operations than

hBFT (2 + 3f
b

). Simulation results validate the theoretical results as described in

Chapter 3.4. The throughput of hBFT is more than 20% higher than that of Zyzzyva

and 40% higher than that of PBFT.

BChain employs chain replication, where the first 2f + 1 replicas must be correct

to ensure safety. When a replica that is neither the head nor the last f replicas

is faulty (the 2nd to the 2f + 1th replica), a request cannot be completed. The re-

chaining protocol takes place when replicas reconfigure the sequence in the chain

160

and reach consensus after certain rounds of re-chaining. As shown in Chapter 4.5,

a round of re-chaining takes much less time than the timeout. Indeed, each replica

sets up a timeout for the re-chaining protocol. The re-chaining takes place only

when replicas do not receive messages before the timer expires, so the actual time

for re-chaining is usually much shorter than the timeout. In combination with the

reconfiguration of faulty replicas, the sudden drop of throughput can be tolerated.

ByzID also handles the backup failure as well. When the coupled IDS generates

an alert, the replica will be reconfigured with a new one. The backup reconfiguration

operates out-of-band, where other replicas operate without waiting for reconfigura-

tion to complete.

In summary, all the three protocols handle the normal case well. The perfor-

mance of the normal case and failure-free case in hBFT and ByzID do not differ

much. In BChain, although there is a sudden drop in performance, since replicas

are reconfigured during re-chaining, they are expected to behave correctly in the

following rounds.

Scalability Generally speaking, the scalability is directly related to the metaphorical

topology. There are two types of topologies used in this thesis: primary-backup

based replication and chain based replication. The primary-backup replication is

expected to scale well since it normally involves a few phases of all-to-all or one-

to-all communication. When the number of replicas increases, the overhead will be

the communication caused by the added replicas. For instance, when the number of

replicas increases from 3f+1 to 6f+1 (where tolerable faulty replicas increases from

f to 2f), the overhead will be the communication between existing replicas and the

extra 3f replicas and the communication between the extra 3f replicas. The number

of cryptographic operations of the bottleneck server (usually the primary) increases

161

as f grows.

In the above observation, we use primary-backup replication to represent the

topologies that involve all-to-all or one-to-all communication. However, in the tradi-

tional discussions about fault tolerance, people usually distinguish broadcast replica-

tion and primary-backup replication. The former represents the topology where each

replica can broadcast messages that will be received by every other replica whereas

the latter represents the topology where the primary is the only replica that can

communicate with all remaining replicas. In this thesis, hBFT falls in the broad-

cast style replication category and ByzID falls into the primary-backup replication

category. Although in our experiments we found that the performance drop in the

two protocols during scalability tests are minimal (compared to the observation for

BChain), it can still be observed that ByzID scales better than hBFT. This can

also be explained by the number of cryptographic operations. Indeed, the nature of

primary-backup replication directly leads to the fact that there are fewer messages

and therefore fewer cryptographic operations involved in the protocol. This type of

protocol usually suffers from the case when the primary is faulty. Careful design

to handle faulty primary is necessary. In ByzID, since the number of cryptographic

operations of the primary is 2 and is not related to f , it scales better than hBFT.

In comparison, in chain replication replicas are ordered as a metaphorical chain.

It can be expected that when the number of replicas grows, the chain becomes

longer, which is more difficult to be saturated with requests. The experimental

results validate that. As the chain becomes longer, the drop of the performance

is higher than in the traditional primary-backup replication. However, the peak

performance is still higher. We observe that chain replication works well when the

number of concurrent requests, which is directly related to the number of clients, is

large enough.

162

Resilience The resilience of a protocol usually involves several aspects: 1) The

performance during failures; 2) The performance in the long run; 3) The performance

under performance attack.

The performance during failures usually refer to the case when backups fail.

This is due to the fact that primary failure is usually handled by view change or

primary reconfiguration. Since all the protocols use similar schemes, the performance

during primary failure would be similar. As discussed in Chapter 4, the primary-

backup replication usually do not suffer from failures. When protocols have different

subprotocols under normal case and failure-free case, the performance will drop when

failures occur. However, there will not be a window when the throughput drops to

zero. Different from that, BChain suffers from a window of throughput dropping to

zero when failures occur. The gap depends on the value of timers for re-chaining.

In a long-lived system, replicas may fail one after another. Eventually more than

f failures may exist, which will render the system neither safe nor live. Therefore, it

is important to recover or reconfigure faulty replicas. In both ByzID and BChain, we

use reconfiguration scheme to replace faulty replicas. ByzID relies on IDS to diagnose

faulty replicas while BChain uses a peer-to-peer scheme to remove and reconfigure

faulty replicas. The BChain scheme is more robust since it does not rely on external

components. However, it has a chance to remove and reconfigure correct replicas.

Almost all the protocols are known to be vulnerable to performance attacks.

Performance attack usually refers to the case where faulty replicas perform legal but

uncivil behaviors to slow down the overall performance while not being detected.

To ensure liveness, several timers are involved. Faulty replicas may manipulate the

timers to delay messages (e.g., send a message right before the timer expires). This

results in a slow protocol. A straightforward solution is to adjust the timers period-

ically but not too aggressively. This is due to the fact that smaller timers may make

163

correct replicas be suspected since they fail to send messages before timers expire.

There is no known solution to entirely prevent a system from suffering due to per-

formance attacks because the effect of a performance attack is the same as the effect

when replicas are just slow. In ByzID, since we rely on the trusted IDS to monitor

the behaviors, it solves more than performance attacks. For instance, it achieves

perfect fairness where replicas must handle requests according to a certain order.

In both hBFT and BChain, we simply adjust the values of the timers periodically

so that the most uncivil behaviors make the overall performance degrade to certain

level.

Fault Tolerance as an Oracle Since fault tolerance protocols are usually compli-

cated and involve careful design, proof, and test, it is interesting to see whether we

can use fault tolerance protocols that have been formally-proven and experimented

validated as correct as an oracle to support fault tolerance in various systems. In

P2S we discussed a framework for building reliable pub/sub systems that directly

adapts an existing fault tolerance library to pub/sub. We built a Paxos library in the

Go programming language to support crash tolerance. The current P2S framework

handles broker failures and demonstrates the most straightforward way of using a

fault tolerance library: using a centralized pub/sub architecture. All the messages

will be handled by the centralized brokers. If the order of fault tolerance matters,

brokers just run the fault tolerance library before forwarding messages.

Although the current framework is simple and straightforward, it demonstrates a

general framework using a fault tolerance library in pub/sub systems. For instance,

the fault tolerance clusters can be distributed across the brokers. Therefore, it avoids

the high volume through the each fault tolerance cluster. In some systems where we

only care about the order or the reliability of certain type of messages, the fault

164

tolerance library can be called only when necessary.

Generally speaking, using fault tolerance library as an oracle is quite practical

and enjoys the following benefits: 1) It uses existing, proven fault tolerance protocol,

which simplifies the design of pub/sub systems, e.g. topology adjustment, protocol

adjustment, and proof of correctness; 2) It provides flexibility for designing stronger

semantics of fault tolerance easily, e.g. Byzantine fault tolerance; 3) Management of

replication imposes minimum overhead; 4) It provides flexibility in complex systems

where the order of certain types of messages matters.

165

Table 7.2. Characteristics of state-of-the-art BFT protocols tolerating f failures
with batch size b. Bold entries mark the protocol with the lowest cost. The critical
path denotes the number of one-way message delays. ∗Two message delays is only
achievable with no concurrency.

Protocols #Replicas Throughput Latencies Concurrency
Faulty

clients
Requirement

PBFT [18] 3f + 1 2 + 8f+1
b

4 Yes Yes None

Q/U [2] 5f + 1 2 + 8f 2∗ No No None

HQ [34] 3f + 1 4 + 4f 4 No No None

FaB [85] 5f + 1 1 + 2f+2
b

3 Yes No None

Zyzzyva [69]

-Failure-free Case 3f + 1 2 + 3f
b

3 Yes No None

-Normal Case 3f + 1 4 + 5f + 3f
b

5 Yes No None

Zyzzyvark [28] 3f + 1 2f + 2 + 3f
b

4 Yes Yes None

Shuttle [107] 2f + 1 2 + 2f
b

2f + 2 No Yes
Olympus

Reconfig.

Aliph-Chain [50] 3f + 1 1 + f+1
b

3f + 2 No No
Protocol

Switch

hBFT 3f + 1 2 + 3f
b

3 Yes Yes None

BChain-3 3f + 1 1 + 3f+2
b

2f + 2 No Yes Reconfig.

BChain-5 5f + 1 1 + 4f+2
b

3f + 2 No Yes None

ByzID 2f + 1 2 3 Yes Yes IDS

166

Chapter 8

Conclusion

The focus of this dissertation is simple: fault tolerance (FT) techniques and their

practical applications in a general framework. We discussed three different Byzantine

fault tolerant (BFT) replication protocols that make BFT more practical by making

it more cost-effective, scalable, robust, and resilient.

As a step towards realizing the goal, we designed three novel BFT replication

protocols through different techniques, formally proved them, and experimentally

validated them. First, we designed hBFT, a speculative Byzantine fault tolerance

protocol that improves the performance of existing state-of-the-art protocols by mov-

ing some jobs to the clients while not being encumbered by some of the problems

in previous works. As a result, the performance is improved in the failure-free case

or normal cases while faulty clients are tolerated with minimum cost. Second, we

designed BChain, a chain-replication based protocol that enjoys the benefits of fewer

cryptographic operations at the bottleneck server. In addition, faulty replicas are

detected in a peer-to-peer manner and are eventually removed from the chain and

reconfigured. Third, we designed ByzID, a simplified BFT protocol that rely on

trusted intrusion detection components. Specifications are built to monitor the be-

167

haviors of the protocols. In case of failures, an alert is generated by the coupled

intrusion detection component at a replica. The faulty replicas are then reconfig-

ured. As a result, some messages do not require MAC or signature and some uncivil

behaviors can be detected, which can not be detected in a peer-to-peer manner.

Finally, we discussed a framework in pub/sub system that tolerates broker failures

by using fault tolerance library as an oracle. We demonstrated our design through

the simplest architecture in pub/sub: a centralized architecture. The framework ca

be expanded to more complicated systems or to tolerate Byzantine failures. The

framework shows a general way of utilizing FT protocols in broader areas.

168

References

[1] Amazon S3 Storage Service. http://aws.amazon.com/s3.

[2] M. Abd-El-Malek, G. Ganger, G. Goodson, M. Reiter, and J. Wylie. Fault-
scalable Byzantine fault-tolerant services. SOSP, pp. 59–74, ACM Press, 2005.

[3] J. Adams and K. Ramarao. Distributed diagnosis of Byzantine processors and
links. ICDCS, pp. 562–569, IEEE Computer Society, 1989.

[4] P. Alsberg, and J. Day. A principle for resilient sharing of distributed resources.
Proc. 2nd Int. Conf. Software Engineering, pp. 627–644, 1976.

[5] Y. Amir, B. A. Coan, J. Kirsch, and J. Lane. Prime: Byzantine replication under
attack. IEEE Trans. Dep. Sec. Comp., 8(4), 2011.

[6] Y. Amir, C. Danilov, D. Dolev, J. Kirsch, J. Lane, C. Nita-Rotaru, J. Olsen,
D. Zage. Scaling Byzantine fault-tolerant replication to wide area networks. DSN,
pp. 105–114, 2006.

[7] I. Avramopoulos, H. Kobayashi, R. Wang, and A. Krishnamurthy. Highly secure
and efficient routing. INFOCOM 2004, IEEE Computer and Communication So-
ciety, 2004.

[8] R. Baldoni, J. Helary, and M. Raynal. From crash fault-tolerance to arbitrary-
fault tolerance: towards a modular approach. DSN, pp. 273–282, 2000.

[9] M. Bellare and P. Rogaway. The exact security of digital signatures: How to sign
with RSA and Rabin. In Advances in Cryptology - Eurocrypt 96, Lecture Notes
in Computer Science Vol. 1070, Springer-Verlag, 1996.

[10] M. Bellare. New proofs for NMAC and HMAC: Security without collision-
resistance. In Advances in Cryptology - Crypto 2006, LNCS Vol. 4117, Springer,
2006.

[11] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message au-
thentication. In Advances in Cryptology - Crypto 96, LNCS Vol. 1109, Springer,
1996.

[12] T. Benzel. The science of cyber security experimentation: the DETER project.
ACSAC, pp. 137–148, 2011.

169

[13] S. Bhola, R. E. Strom, S. Bagchi, Y. Zhao, and J. S. Auerbach. Exactly-once
Delivery in a Content-based Publish-Subscribe System. DSN, pp. 7–16, 2002.

[14] K. P. Birman, A. Schiper, and P. Stephenson. Lightweigt Causal and Atomic
Group Multicast. ACM Trans. Comput. Syst., 9(3): 272–314, 1991.

[15] N. Budhiraja, K. Marzullo, F. Schneider, and S. Toueg. The primary-backup
approach. S. Mullender (ed.) Distributed systems, 2nd ed, 1993.

[16] F. Budinsky, G. DeCandio, R. Earle, and T. Francis, J. Jones, J. Li, M. Nally,
C. Nelin, V. Popescu, S. Rich, A. Ryman, and T. Willson. WebSphere Studio
overview. IBM Syst. J., 43(2):384–419, 2004.

[17] M. Burrows. The Chubby lock service for loosely-coupled distributed systems.
OSDI, pp. 335–350, 2006.

[18] M. Castro and B. Liskov. Practical Byzantine fault tolerance. OSDI, pp. 173–
186, 1999.

[19] M. Castro and B. Liskov. Practical Byzantine fault tolerance and proactive
recovery. ACM Trans. Comput. Syst, 20(4): 398–461, 2002.

[20] R. Chand and P. Felber. XNET: A Reliable Content-Based Publish/Subscribe
System. SRDS, pp. 264–273, 2004.

[21] T. Chandra, V. Hadzilacos and S. Toueg. The weakest failure detector for solving
consensus. J. ACM 43(4): 685–722, 1996.

[22] T. Chandra, and S. Toueg. Unreliable failure detectors for reliable distributed
systems. PODC, pp. 325–340, 1991.

[23] F. Chang et al. Bigtable: A Distributed Storage System for Structured Data.
ACM Trans. Comput. Syst., 26(2), 2008.

[24] T. Chang, S. Duan, H. Meling, S. Peisert, and H. Zhang. P2S: a fault-tolerant
publish/subscribe infrastructure. DEBS, 189–197, 2014.

[25] M. Chiang, S. Wang, and L. Tseng. An early fault diagnosis agreement under
hybrid fault model. Expert Syst. Appl, 36(3): 5039–5050, 2009.

[26] B. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz. Attested append-only
memory: making adversaries stick to their word. SOSP 2007.

170

[27] A. Clement, F. Junqueira, A. Kate, R. Rodrigues. On the (limited) power of
non-equivocation. PODC, pp. 301–308, ACM, 2012.

[28] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi, M. Dahlin, and T. Riche.
UpRight cluster services. SOSP, pp. 277–290, ACM press, 2009.

[29] A. Clement, E. Wong, L. Alvisi, M. Dahlin, and M. Marchetti. Making Byzantine
fault tolerant systems tolerate Byzantine faults. NSDI, 2009.

[30] R. Coker. www.coker.com.au/bonnie++.

[31] J. Considine, M. Fitzi, M. Franklin, L. Levin, U. Maurer, and D. Metcalf. Byzan-
tine agreement given partial broadcast. J. Cryptology, 18, pp. 191–217, 2005.

[32] J. C. Corbett et al. Spanner: Google’s Globally Distributed Database. OSDI
2006, pp. 177–190, USENIX Association, 2006.

[33] M. Correia, N. F. Neves, and P. Veŕıssimo. How to tolerate half less one Byzan-
tine nodes in practical distributed systems. SRDS, 2004.

[34] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira. HQ replication:
A hybrid quorum protocol for Byzantine fault tolerance. ACM Trans. Comput.
Syst. 31(3): 8 (2013)

[35] D. E. Denning. An intrusion-detection model. IEEE Trans. Software Eng.,
vol. 13(2): 222–232, 1987.

[36] A. Doudou, B. Garbinato, R. Guerraoui, and A. Schiper. Muteness failure de-
tectors: Specification and implementation. Proc. Third EDCC, LNCS vol. 1667,
pp. 71–87, Springer, 1999.

[37] A. Doudou, B. Garbinato, and R. Guerraoui. Encapsulating failure detection:
from crash to Byzantine failures. Ada-Europe 2002, 24–50.

[38] A. Doudou and A. Schiper. Muteness failure detectors for consensus with Byzan-
tine processes, Brief announcement in PODC, pp. 315, ACM press, 1998.

[39] S. Duan, K. Levitt, S. Peisert, and Haibin Zhang. BChain: Byzantine Replica-
tion with High Throughput and Embedded Reconfiguration. OPODIS, to appear,
2014.

171

[40] S. Duan, S. Peisert, and K. Levitt. hBFT: speculative Byzantine fault tolerance
with minimum cost. IEEE Transactions on Dependable and Secure Computing,
March 2014.

[41] S. Duan, K. Levitt, H. Meling, S. Peisert, and H. Zhang. Byzantine Fault Tol-
erance from Intrusion Detection. SRDS, pp. 253–264, 2014.

[42] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial
synchrony. J. ACM 2009.

[43] C. Esposito and D. Cotroneo and A. S. Gokhale. Reliable publish/subscribe
middleware for time-sensitive internet-scale applications. DEBS 35(2): 288–323,
1988.

[44] P. Eugster, and P. Felber, R. Guerraoui, and A. Kermarrec. The many faces of
publish/subscribe. ACM Comput. Surv. 2(35): 114–131, 2003.

[45] M. Fischer, N. Lynch, and M. Paterson. Impossibility of distributed consensus
with one faulty process. J. ACM 32(2): 374–382, 1985.

[46] M. Fitzi and U. Maurer. From partial consistency to global broadcast. STOC,
pp. 494–503. ACM, 2000.

[47] V. K. Garg and J. Bridgman. The weighted Byzantine agreement problem.
IPDPS, pp. 524–531, 2011.

[48] S. Ghemawat, H. Gobioff, and S. Leung. The Google file system. SOSP, pp. 29–
43, ACM, 2003.

[49] Y. Gu, Z. Zhang, F. Ye, H. Yang, M. Kim, H. Lei and Zhen Liu. An empirical
study of high availability in stream processing systems. Middleware (Companion),
2009

[50] R. Guerraoui, N. Knezevic, V. Quema, and M. Vukolic. The next 700 BFT
protocols. EuroSys, pp. 363–376, ACM, 2010.

[51] The Go Project. The Go programming language. http://golang.org/, 2013.

[52] A. Haeberlen, P. Kouznetsov, and P. Druschel. The case for Byzantine fault de-
tection. HotDep, 2006.

[53] A. Haeberlen, P. Kouznetsov, and P. Druschel. PeerReview: practical account-
ability for distributed systems. SOSP, pp. 175–188, ACM, 2007.

172

[54] J. Hendricks, S. Sinnamohideen, G. Ganger, and M. Reiter. Zzyzx: scalable
fault tolerance through Byzantine locking. DSN, pp. 363–372, IEEE Computer
Society, 2010.

[55] H. Hsiao, Y. Chin, and W. Yang. Reaching fault diagnosis agreement under a
hybrid fault model. IEEE Transactions on Computers, vol. 49, no. 9, Sep. 2000.

[56] M. Hurfin, M. Raynal. A simple and fast asynchronous consensus protocol. Dis-
tributed Computing 12(4), 209–223, 1999.

[57] J. Hwang and U. Çetintemel and S. B. Zdonik. Fast and Highly-Available Stream
Processing over Wide Area Networks. ICDE, 804–813, 2008.

[58] G. Jacques-Silva, B. Gedik, H. Andrade, K. Wu, and R. K. Iyer. Fault injection-
based assessment of partial fault tolerance in stream processing applications.
DEBS, 231–242, 2011.

[59] Z. Jerzak and C. Fetzer. Soft state in publish/subscribe. DEBS, 1–12, 2009.

[60] S. M. Jothen. Acropolis: Aggregated Client Request Ordering by Paxos. Mater’s
thesis. University of Stavanger, 2013.

[61] S. M. Jothen and T. E. Lea. Goxos: A Paxos implementation in the Go Pro-
gramming Language. Technical report. University of Stavanger, 2012.

[62] S. D. Kanvar, M. T. Schlosser, and H. Garcia-Molina. The EigenTrust algorithm
for reputation management in p2p networks. WWW, pp. 640–651, 2003.

[63] R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle, S. V. Mohammadi,
W. Schröder-Preikschat, and K. Stengel. CheapBFT: resource-efficient Byzan-
tine fault tolerance. EuroSys, pp. 295–308, EuroSys 2012.

[64] R. S. Kazemzadeh and H. Jacobsen. Reliable and Highly Available Distributed
Publish/Subscribe Service. SRDS, pp. 41-50, 2009.

[65] R. S. Kazemzadeh and H. Jacobsen. Opportunistic multipath forwarding in
content-based publish/subscribe overlays. Middleware, pp. 249–270, 2012.

[66] S. Kent, C. Lynn, and K. Seo. Secure border gateway protocol (S-BGP). IEEE
JSAC, 18(4): 582–592, 2000.

173

[67] J. Knight and N. Leveson. An Experimental Evaluation of The Assumption of
Independence in MultiVersion Programming. IEEE Trans. Software Eng. 12(1):
96–109, 1986.

[68] C. Ko, M. Ruschitzka, and K. N. Levitt. Execution monitoring of security-
critical programs in distributed systems: a specification-based approach. IEEE
S&P, pp. 175–187, 1997.

[69] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. Zyzzyva: speculative
Byzantine fault tolerance. SOSP, pp. 45–58, ACM, 2007.

[70] Y. Kwon and M. Balazinska and A. G. Greenberg. Fault-tolerant stream pro-
cessing using a distributed, replicated file system. PVLDB, 1(1): 574–585, 2008.

[71] L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565, 1978.

[72] L. Lamport. Using time instead of timeout for fault-tolerant distributed systems.
Trans. on Programming Languages and Systems 6(2), 254–280, 1984.

[73] L. Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2): 133–
169, 1998.

[74] L. Lamport. Paxos Made Simple, Fast, and Byzantine. OPODIS, pp. 7–9, 2002.

[75] L. Lamport. Fast Paxos. Distributed Computing, 2(19): 79–103, 2006.

[76] L. Lamport. Lower bounds for asynchronous consensus. Distributed Computing,
19(2): 104–125, 2006.

[77] L. Lamport, D. Malkhi, and L. Zhou. Reconfiguring a state machine. SIGACT
News 41(1): 63–73, 2010.

[78] L. Lamport, R. E. Shostak, and M. C. Pease. The Byzantine generals problem.
ACM Trans. Program. Lang. Syst. 4(3): 382–401, 1982.

[79] T. E. Lea. TrInc: Small trusted hardware for large distributed systemsImple-
mentation and Experimental Evaluation of Live Replacement and Reconfigura-
tion Master’s thesis. University of Stavanger, 2013.

[80] D. Levin, J. R. Douceur, J. R. Lorch, and T. Moscibroda. TrInc: Small trusted
hardware for large distributed systems. NSDI, 1–14, 2009.

174

[81] C. Lumezanu, N. Spring, and B. Bhattacharjee. Decentralized Message Ordering
for Publish/Subscribe Systems. Middleware, 162–179, 2006.

[82] T. F. Lunt and R. Jagannathan. A prototype real-time intrusion-detection ex-
pert system. S&P, pp. 59–66, 1988.

[83] D. Malkhi and M. Reiter. Unreliable intrusion detection in distributed compu-
tations. CSFW, pp. 116–125, 1997.

[84] D. Malkhi and M. Reiter. Byzantine quorum systems. Distributed Computing,
11(4), 1998.

[85] J. Martin, and L. Alvisi. Fast Byzantine consensus. IEEE Trans. Dependable
Sec. Comput. 3(3): 202-215, 2006.

[86] L. MartinGarcia. http://www.tcpdump.org.

[87] Y. Mao, F. Junqueira, and K. Marzullo. Towards low latency state machine repli-
cation for uncivil wide-area networks. HotDep 2009.

[88] Microsoft One Drive. https://onedrive.live.com.

[89] H. G. Molina and A. Spauster. Ordered and Reliable Multicast Communication.
ACM Trans. Comput. Syst., 9(3): 242-271, 1991.

[90] R. Monson-Haefel and D. Chappell. Java Message Service. O’Reilly & Asso-
ciates, Inc., 2000.

[91] R. Pang, V. Paxson, R. Sommer, and L. Peterson. binpac: a yacc for writing
application protocol parsers. IMC, pp. 289–300, 2006.

[92] V. Paxson. Bro: a system for detecting network intruders in real-time. Computer
Networks, 31(23-24): 2435-2463, 1999.

[93] L. L. Peterson, N. C. Buchholz, and R. D. Schlichting. Preserving and Us-
ing Context Information in Interprocess Communication. ACM Trans. Comput.
Syst., 7(3): 217-246, 1989.

[94] T. Pongthawornkamol and K. Nahrstedt and G. Wang. Reliability and Timeli-
ness Analysis of Fault-tolerant Distributed Publish / Subscribe Systems. ICAC,
2013.

175

[95] F. Preperata, G. Metze, and R. Chien. On the connection asssignment problem
of diagnosable systems. IEEE Transactions on Electronic Computers, EC–16(6):
848–854, December 1967.

[96] K. Ramarao and J. Adams. On the diagnosis of Byzantine faults. Proc. Symp.
Reliable Distributed Systems, pp. 144–153, 1988.

[97] T. Redkar. Windows Azure Platform. Apress, 2010.

[98] J. Reumann. Pub/Sub at Google. OPODIS, LNCS vol. 7702, pp. 345–359, 2012.

[99] R. Rodrigues, M. Castro, and B. Liskov. BASE: using abstraction to improve
fault tolerance. ACM Trans. Comput. Syst. 21(3): 236–269, 2003.

[100] M. Roesch. Snort: lightweight intrusion detection for networks. LISA, pp. 229–
238, 1999.

[101] F. Schneider. Implementing fault-tolerant services using the state machine ap-
proach: A tutorial. ACM Computing Surveys 22(4): 299–319, 1990.

[102] M. Serafini, A. Bondavalli, and N. Suri. Online diagnosis and recovery: on the
choice and impact of tuning parameters. IEEE Trans. Dependable Sec. Comput,
4(4): 295–312, 2007.

[103] K. Shin and P. Ramanathan. Diagnosis of processors with Byzantine faults in
a distributed computing system. Proc. Symp. Fault-Tolerant Computing, pp. 55–
60, July 1987.

[104] A. C. Snoeren, K. Conley, and D. K. Gifford. Mesh Based Content Routing
using XML. SOSP, pp. 160–173, 2001.

[105] R. Sommer and V. Paxon. Outside the closed world: on using machine learn-
ing for network intrusion detection. IEEE Symposium on Security and Privacy,
pp. 305–316, 2010.

[106] P. Uppuluri and R. Sekar. Experiences with specification-based intrusion de-
tection. RAID, pp. 172–189, Springer, 2001.

[107] R. van Renesse, C. Ho, and N. Schiper. Byzantine chain replication. OPODIS,
pp. 345–359, 2012.

[108] R. van Renesse and F. B. Schneider. Chain replication for supporting high
throughput and availability. OSDI, pp. 91–104, USENIX Association, 2004.

176

[109] G. S. Veronese, M. Correia, A. Bessani, and L. Lung. Spin one’s wheels? Byzan-
tine fault tolerance with a spinning primary. SRDS, pp. 135–144, 2009.

[110] G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, and P. Veŕıssimo.
Efficient Byzantine fault tolerance. IEEE Tran. Comp., 62(1), 2013.

[111] M. Vukolic. Abstractions for asynchronous distributed computing with mali-
cious players. PhD thesis. EPFL, Lausanne, Switzerland, 2008.

[112] C. Walter, P. Lincoln, and N. Suri. Formally verified on-line diagnosis. IEEE
Trans. Software Eng, 23(11): 684–721, 1997.

[113] S. Wang, Y. Chin, and K. Yan. Reaching a fault detection agreement. Proc.
Int’l Conf. Parallel Processing, pp. 251–258, 1990.

[114] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, A. Joglekar An integrated experimental environment for dis-
tributed systems and networks. OSDI, pp. 255–270, 2002.

[115] G. A. Wilkin, K. R. Jayaram, P. Eugster, and A. Khetrapal. FAIDECS: Fair
Decentralized Event Correlation. Middleware, pp. 228–248, 2011.

[116] K. Yan and S. Wang. Grouping Byzantine agreement. Computer Standard &
Interfaces, 28 (1), pp. 75–92, 2005.

[117] J. Yin, J. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin. Separating
agreement from execution for Byzantine fault tolerant services. SOSP, pp. 253–
267, 2003.

[118] P. Zielinski. Low-latency atomic broadcast in the presence of contention. DISC,
pp. 505–519, 2006.

[119] P. Zielinski. Optimistically terminating consensus: all asynchronous consensus
protocols in one framework. ISPDC, pp. 24–33, 2006.

[120] K. Zhang, V. Muthusamy, and H. Jacobsen. Total Order in Content-Based
Publish/Subscribe Systems. ICDCS, 2012.

177

Appendix A

BChain Theorems and Proofs

A.1 BChain-3 Re-chaining-I

Theorem 1. Let t denote the number of faulty replicas in the chain where t ≤ f

and n = 3f + 1. If the head is correct and 3t ≤ f , the faulty replicas are moved to

the end of chain after at most 3t re-chainings. If the head is correct and 3t > f ,

the faulty replicas are moved to the end of chain with at most 3t re-chainings and

at most 3t− f replica reconfigurations, assuming further that each individual replica

can be reconfigured within f re-chainings.

Proof: We assume all the timers are correctly set. We also assume that a single

replica that is moved to set B can be correctly reconfigured within f re-chainings.

Namely, it becomes correct before it is again moved from set B to set A.

The proof is divided into four parts (Lemmas 2–5). Lemma 2 formally proves

that if there is only one faulty replica in the chain, it will be moved to the end of the

chain within at most two re-chainings. Lemma 3 captures an essential fact which

is used on multiple occasions. Lemma 4 shows the general result that all faulty

replicas are eventually moved to set B. Lemma 5 proves the maximum number of re-

178

chainings required to remove t failures in the worst case. It also bounds the number

of reconfigurations.

Faulty replicas can be divided into two types: first, a replica that does not be-

have according to the protocol so that the replica’s predecessor fails to receive the

valid 〈Ack〉 message on time, and second, a replica that sends a 〈Suspect〉 message

maliciously, regardless of whether its successor is correct or not.

Lemma 2. If there is only one faulty replica, it is moved to the end of the chain

within two re-chainings. At most two replicas are moved to set B.

Proof of Lemma 2: First, if the only faulty replica, say, pi, causes its (correct) prede-

cessor
↼

pi to fail to receive 〈Ack〉 message on time, it might trigger many 〈Suspect〉

messages sent from replicas ahead of pi. However, since the head only deals with

the 〈Suspect〉 message sent by the replica which is the closest to the proxy tail, the

〈Suspect〉 message sent from
↼

pi will be handled. In this case, the faulty replica pi

is moved to the tail with only one re-chaining.

Second, we consider the case where the faulty replica pi maliciously accuses its

successor
⇀

pi. According to our re-chaining algorithm, the faulty replica pi (i.e., the

accuser) becomes the proxy tail after one re-chaining. The proxy tail does not have

a successor, so it is not capable of sending any 〈Suspect〉 messages to accuse any

replicas. Therefore, pi will be moved to the end of the chain if there is another re-

chaining, in which case the
↼

pi fails to receive the 〈Ack〉message on time. In summary,

the faulty replica pi can be moved to the tail with at most two re-chainings.

In either case, a single faulty replica is moved to the end of the chain within at

most two re-chainings, and furthermore, at most two replicas are moved to set B.

2

179

Lemma 3. If a correct replica pi sends a 〈Suspect〉 message to accuse its successor
⇀

pi while
⇀

pi does not send a 〈Suspect〉 message,
⇀

pi must be faulty.

Proof of Lemma 3: Suppose
⇀

pi is correct. If the correct replica, pi, sends a 〈Chain〉

message but fails to receive an 〈Ack〉 message on time, then pi sends a 〈Suspect〉

message to accuse its successor. If
⇀

pi is correct but does not send a 〈Suspect〉

message then it must have received the corresponding 〈Ack〉 message on time. In

this case, pi can also receive the 〈Ack〉 message on time as well, since both of them

are assumed to be correct. Therefore, pi should not send a 〈Suspect〉 message in

this case and
⇀

pi must be faulty. 2

Lemma 4. In the presence of t failures, assuming faulty replicas moved to set B are

correctly reconfigured, one faulty replica is eventually moved to set B. This results in

t− 1 faulty replicas in set A. Therefore, all the faulty replicas are eventually moved

to set B.

Proof of Lemma 4: We consider the suspect message which is the first one handled by

the head. (Recall that the head only deals with one 〈Suspect〉 message that is sent

from the replica that is closest to the proxy tail.) On the one hand, if the 〈Suspect〉

message is generated by a correct replica, according to Lemma 3, a faulty replica is

moved to set B with just this re-chaining, resulting in t− 1 faulty replicas in set A.

On the other hand, if the 〈Suspect〉 message is generated by a faulty replica px, it

will become the proxy tail after one re-chaining. Since the proxy tail is not capable

of generating 〈Suspect〉 messages, the behavior of the px can be then either correct,

or faulty, which will cause
↼

px to fail to receive 〈Ack〉 on time.

We describe four cases in additional detail: (1)
↼

px is faulty and generates a

〈Suspect〉 message to accuse px, and px is moved to the end of the chain with one

re-chaining; (2)
↼

px is faulty and moved to the end of the chain in another re-chaining

180

due to the 〈Suspect〉 message of the predecessor of
↼

px; (3)
↼

px is correct and px

behaves in a faulty manner. This means
↼

px failed to receive 〈Ack〉 message on time,

so px is moved to the end of the chain due to the 〈Suspect〉 message from
↼

px; (4)

otherwise, after another re-chaining, px stays in set A and becomes the predecessor

of the new proxy tail pk. This indicates either of the following two cases: (4a) pk is

correct; (4b) pk is faulty.

In any of the first three cases, a faulty replica is moved to the end of the chain,

resulting in at most t− 1 faulty replicas in the system.

We now discuss the last two cases and how the re-chaining algorithm eventually

removes a faulty replica, resulting in t− 1 faulty replicas in set A.

For case (4a), a correct replica pk becomes the proxy tail because it accuses its

successor pj in a previous re-chaining. According to Lemma 3, pj must be faulty.

Therefore, a faulty replica has been moved to the end of the chain.

In case (4b), px and pk are both faulty and pk is not capable of generating

〈Suspect〉 messages. Now the two faulty replicas px and pk share the same “risk,” in

the sense that if either of the two replicas behaves in a faulty manner, one of them is

moved to set B in another re-chaining. Indeed, if px generates a 〈Suspect〉 message

to signal the failure of pk, pk is moved to the end of the chain, resulting in t−1 faulty

replicas in set A. If px or pk causes
↼

px to fail to receive 〈Ack〉, px or pk is moved

to set B. Therefore, in order to stay in set A, both replicas must behave correctly.

Inductively, if no more faulty replicas were to be removed afterwards, all the t faulty

replicas would share the same risk. Since we assume that the faulty replicas moved

to set B are correctly reconfigured, we do not need to worry about the cases where

the faulty replicas again move back to set A. With one more re-chaining, at least

one faulty replica is moved to set B, resulting in t− 1 replicas in the chain.

We have proved that if there are t faulty replicas in the chain, the algorithm is

181

able to move at least one faulty replica to the end of the chain, resulting in t − 1

faulty replicas within t+ 1 re-chainings. Iteratively, all the faulty replicas are moved

to set B. 2

Lemma 5. All the faulty replicas are moved to set B within 3t re-chainings and at

most 3t replicas have been moved to set B. In the presence of t failures, max(3t−f, 0)

reconfigurations are required.

Proof of Lemma 5: In order to maximize the number of re-chainings, faulty replicas

must accuse correct replicas without being moved to set B. This is because otherwise

at least one faulty replica is moved to set B in one re-chaining.

Initially, a faulty replica can accuse its successor while not being moved to set B.

After one re-chaining, this faulty replica becomes the proxy tail. It is able to accuse

another correct replica only if it moves forward later, in which case some other re-

chaining must occur. Note that the reason that we put the first replica in set B just

behind the head is therefore clear: to prevent correct replicas originally in set B from

becoming the successors of faulty replicas after re-chainings. However, according to

Lemma 3, such a correct replica accused by the proxy tail must have already accused

a faulty replica so that it becomes the proxy tail. In other words, if each of the

faulty replicas accuses more than one correct replica, the correct replica must have

already accused a faulty replica. In summary, if there are t faulty replicas, they are

able to accuse at most t correct replica before all of them become the proxy tail.

Additionally, all t faulty replicas are able to accuse another t − 1 correct replicas

in total. Some of the faulty ones may accuse more than one correct replica but

others will not get the chance before they are moved to set B. Indeed, if the t

faulty replicas had accused at least t correct replicas, the t correct replicas must

have already accused t faulty replicas, resulting in no faulty replicas in the system.

182

The maximum re-chainings for t failures is therefore t+ 2(t− 1) + 2, where the last

two re-chainings is due to Lemma 2. Since set B contains f replicas, 3t− f replicas

must be reconfigured to avoid the faulty replicas moved to set B going back to set

A. If 3t ≤ f then no reconfigurations are required. Lemma 5 now follows. 2

A.2 BChain-3 Re-chaining-II

Theorem 6. Let t denote the number of faulty replicas in the chain where t ≤ f

and n = 3f + 1. If the head is correct and 2t ≤ f , the faulty replicas are moved to

the end of chain after at most 2t re-chainings. If the head is correct and 2t > f ,

assuming that each individual replica can be reconfigured within bf/2c re-chainings,

then the faulty replicas are moved to the end of chain with at most 2t re-chainings

and at most 2t− f replica reconfigurations.

The proof for this theorem easily follows given that once a 〈Suspect〉 message is

handled, there must be a faulty replica which has already moved to the tail of the

chain. To justify the above fact, one simply needs to prove that for a 〈Suspect〉

message handled by the correct head, one of the accuser and the accused must each

be faulty. The proof is relatively trivial and we therefore omit the details.

A.3 BChain-3 Safety

Theorem 7 (Safety). If no more than f replicas are faulty, non-faulty replicas agree

on a total order on client requests.

Proof: The proof of the theorem is composed of two parts. First, we prove that if

a request m commits at a correct replica pi and a request m′ commits at a correct

183

replica pj with the same sequence number, it holds that m equals m′ within a view

and across views. Then we prove that, for any two requests m and m′ that commit

with sequence number N and N ′ respectively and N < N ′, the execution history

Hi,N is a prefix of Hi,N ′ for at least one correct replica pi. Together, they imply the

safety of BChain-3.

I We first prove the first part within a view and begin by providing the following

lemma.

Lemma 8. If a request m commits at a correct replica pi, at least 2f + 1 replicas

(including pi) accept the 〈Chain〉 message with the same m and sequence number.

Proof of Lemma 8: We consider two cases: pi ∈ A, and pi ∈ B.

B pi ∈ A. We further consider two sub-cases: (1) pi is among the first f replicas

of the chain; (2) pi is among the subsequent replicas (i.e., pi is among the (f + 1)th

replica and the (2f + 1)th replica).

Case (1): It is easy to see that if pi is among the first f replicas, pi and all its preceding

replicas accept a 〈Chain〉 message, since pi receives a 〈Chain〉 message with valid

signatures by P(pi). It remains to be shown that all the subsequent replicas of pi

accept the 〈Chain〉 message.

To prove this, we must show that at least one correct replica p′ among the last

f +1 replicas in set A has sent an 〈Ack〉 message and all the replicas between pi and

p′ have sent 〈Ack〉 messages. Note that if a correct replica sends an 〈Ack〉 message,

it must have already accepted the corresponding 〈Ack〉 message and the 〈Chain〉

message. Meanwhile, since p′ receives an 〈Ack〉 message with signatures from S(pi),

all the subsequent replicas of p′ have already sent an 〈Ack〉 message. Combining all

of this, all subsequent replicas of pi in the chain send an 〈Ack〉 message and accept

the 〈Chain〉 message with the same m and sequence number.

184

We now prove by induction that at least one correct replica p′ among the last

f+1 replicas sends an 〈Ack〉 message with the same m and sequence number and all

the replicas between pi and p′ send an 〈Ack〉 message. Clearly, pi accepts an 〈Ack〉

message with f+1 signatures by S(pi). Among S(pi), at least one replica p′′ is correct.

If p′′ is among the last f + 1 replicas, we are done here, since S(pi) contains all the

replicas between pi and p′′. Otherwise, inductively, we can eventually find at least

one correct replica p′ as required which is among the last f + 1 replicas. Meanwhile,

each correct replica between pi and p′ ensures that all the replicas between pi and p′

have sent 〈Ack〉 messages.

Case (2): Likewise, it is easy to see that if pi is among the last f + 1 replicas, pi

and all its subsequent replicas accept a 〈Chain〉 message since pi receives an 〈Ack〉

message with valid signatures by S(pi). We need to show all the preceding replicas

of pi accept the 〈Chain〉 message.

Similarly, we just need to prove that at least one correct replica p′ among the

first f + 1 replicas has sent a 〈Chain〉 message and all the replicas between pi and p′

send an 〈Chain〉 message. We show this by induction. Note that pi accepts 〈Chain〉

message with f + 1 signatures by P(pi). Among P(pi), at least one replica p′′ is

correct. If p′′ is among the first f + 1 replicas, again we are done here. Otherwise, p′′

receives 〈Chain〉 message with f + 1 signatures from P(p′′) and at least one replica

in P(p′′) is correct. Continually following the step, at least one correct replica p′ as

required can be found among the first f +1 replicas. As each correct replica between

pi and p′ sends a 〈Chain〉 message with f + 1 signatures, all the replicas between pi

and p′ send a 〈Chain〉 message.

B pi ∈ B. If pi is in set B, it receives f + 1 matching 〈Chain〉 messages from replicas

in set A. Among the f + 1 replicas, at least one is correct. If the correct replica is

185

among the first f replicas, following from the first case at least 2f +1 replicas accept

and send 〈Chain〉 message with m. If the correct replica is among the last f + 1

replicas in set A, following from the second case, at least 2f + 1 replicas then accept

and send 〈Chain〉 message with m.

In either case (pi ∈ A or pi ∈ B), if a request m commits at pi, at least 2f + 1

replicas (including itself) accept and send 〈Chain〉 message for the same m. The

lemma now follows. 2

We now show the proof and again address two cases—first where the two requests

commit with the same re-chaining number, and second with different re-chaining

numbers.

First, we need to prove that if m commits at pi and m′ commits at pj with the

same re-chaining number ch, m equals m′. Indeed, following Lemma 8, suppose m

commits at pi with ch, at least 2f + 1 replicas accept the 〈Chain〉 message with m,

and at least 2f + 1 replicas accept the 〈Chain〉 message with m′. Since they accept

the 〈Chain〉 message with the same chain order, at least one correct replica accepts

and sends two conflicting 〈Chain〉 messages—one of them contains m while the other

contains m′—which causes a contradiction. Thus, it must be case that m equals m′.

We now prove that if m commits at pi and m′ commits at pj with different re-

chaining numbers, the statement that m equals m′ remains true. We assume that

m commits at pi with ch and m′ commits at pj with ch′. Without loss of generality,

ch′ > ch.

During the re-chainings, some replica(s) may be reconfigured. However, our re-

chaining and reconfiguration algorithms ensure that once a replica is reconfigured

it still has the same state as the non-faulty replicas by maintaining the history and

(missing) messages from other replicas.

186

We now proceed in the proof via a sequence of hybrids. Any two consecutive

hybrids differ from each other in their configurations. However, only one replica gets

reconfigured in the latter hybrid. The initial hybrid is the just the configuration

where m commits at a replica pi with a re-chaining number ch, while the last hybrid

is the one where m′ commits at a replica pj with a re-chaining number ch′.

Since m commits at pi with ch, according to Lemma 8, at least 2f + 1 replicas

accept and send an 〈Chain〉 message for m. The replica that has just been recon-

figured must have the same state as the rest of the non-faulty replicas due to our

reconfiguration algorithm. It is easy to prove via a hybrid argument that there exists

two consecutive hybrids where at least 2f + 1 replicas accept an 〈Chain〉 message

for m and N in the former hybrid, and at least 2f + 1 replicas accept an 〈Chain〉

message for m′ and N in the latter hybrid.

Intersection of two Byzantine quorums would imply that at least one correct

replica accepts two conflicting messages with the same sequence number, unless the

replica that has been just reconfigured might be the correct one. Even in this case,

it still causes a contradiction, as it must accept m with N according to our reconfig-

uration algorithm. However, if accepts the m′ with N instead, this contradicts our

reconfiguration assumption that reconfigured replica is correct after joining.

In either case, we have that if m commits at pi and m′ commits at pj with the

same sequence number during the same view, it holds that m equals m′.

Across views.

We now prove that if m commits at pi with view number v and m′ commits at

pj with view number v′ where v′ > v and both with the same sequence number N ,

it still holds that m equals m′.

Since m commits at pi in view v, according to Lemma 8, at least 2f + 1 replicas

accept m with N . Replica pi includes a proof of execution for request m with N in

187

the following view changes until it garbage collects the information about a request

with sequence number N . Notice that reconfigured replicas still have the same state

as the non-faulty replicas and the statement even with reconfigured replicas remains

true.

Requestm′ commits in a later view v′. According to the protocol, the head in view

v′ sends a 〈Chain〉 message with m′ and N after view change. This implies either

of the following two cases in previous view(s). First, every view change message

contains an empty entry for sequence number N . However, this cannot be true

because pi did not garbage collect its information about request m with sequence

number N . The other case is that at least one view change message contains m′

for sequence number N with a proof of execution. The proof of execution from a

replica p in set A includes a 〈Chain〉 message with signatures by P(p) and an 〈Ack〉

message with signatures by S(p). The proof of execution from a replica in set B

includes f + 1 〈Chain〉 messages.

We now show that if at least one view change message in a view v1 (v ≤ v1 < v′)

contains m′ and N with a proof of execution, at least 2f + 1 replicas accept m′

with N in view v1. Assuming replica p sends a view change message with a proof of

execution, there are three cases. First, if p is among the first f replicas, the proof of

execution includes an 〈Ack〉 message with f+1 signatures. In the chaining protocol,

at least one correct replica signs and sends an 〈Ack〉 message. Therefore, request m′

with sequence number N commits at a correct replica. According to Lemma 8, at

least 2f + 1 replicas accept m′ with N . Second, if p is among the last f + 1 replicas

in set A, the proof of execution for m′ with N includes a 〈Chain〉 message with f +1

signatures and an 〈Ack〉 message with signatures by S(p). As proved in Lemma 8, at

least 2f + 1 replicas accept m′ with N . Third, if p is in set B, the proof of execution

of m′ includes f + 1 〈Chain〉 messages, which are generated by at least one correct

188

replica in the chaining protocol. Since a correct replica sends a 〈Chain〉 message to

replicas in set A when the request is committed locally, according to Lemma 8, at

least 2f + 1 replicas accept m′ with N .

Since a 〈NewView〉 message by the head includes all the view change messages,

there exists a view v2 (v ≤ v2 ≤ v1 < v′) in which pi contains m and N with a proof

of execution in its view change message while at least 2f + 1 replicas accept m′ in

the chaining protocol. In other words, at least one correct replica accepts both m

and m′ in view v2. This causes a contradiction.

I Next we prove the second part of our theorem that for any two requests m and

m′ that commit with sequence number N and N ′ respectively, the execution history

Hi,N is a prefix of Hi,N ′ for at least one correct replica pi. Specifically, if m commits at

any correct replica with sequence number N , according to Lemma 8, at least 2f + 1

replicas accept m. Similarly, if m′ commits at any correct replica with sequence

number N ′, according to Lemma 8, at least 2f + 1 replicas accept m′. Among the

2f + 1 replicas, at least f + 1 replicas are correct. According to our protocol, correct

replicas only accept 〈Chain〉 messages in sequence-number order. All the sequence

numbers between N and N ′ − 1 must have been assigned. On the other hand, at

least 2f+1 replicas accept m with N . Since there are at least 2f+1 correct replicas,

m and m′ are assigned N and N ′ for at least one correct replica pi. Therefore, Hi,N

is a prefix of Hi,N ′ .

A.4 BChain-3 Liveness

Theorem 9 (Liveness). If no more than f replicas are faulty, then if a non-faulty

replica receives an request from a correct client, the request will eventually be executed

by all non-faulty replicas. Clients eventually receive replies to their requests.

189

Proof: BChain ensures liveness in a partially synchronous environment. We consider

the system only after global stabilization time (i.e., only during periods of synchrony).

Note that the bounds on communication delays and processing delays exist but are

both probably unknown even to replicas. We now prove that BChain is live.

If the replicas in set A are all correct and timers are correctly maintained, then

our chaining subprotocol (Section 4.2.3) guarantees that clients receive replies from

the proxy tail.

We consider the case where the head is correct, timers are correctly maintained,

and there might be faulty replicas. As long as the faulty replicas behave incorrectly,

according to Theorem 1 or Theorem 6 (depending on which re-chaining algorithm

one chooses), faulty replicas are moved to the tail of the chain (where, if needed, they

are reconfigured), non-faulty replicas reach an agreement, and clients receive replies

from proxy tail. If otherwise faulty replicas do not behave incorrectly then they still

reach an agreement. (No further latency can be induced by intermittent or transient

adversaries.) A minor corner case is that the proxy tail behaves correctly in reaching

an agreement but fails to send a reply to some client, in which case the client will

retransmit its request to all the replicas in set A. Upon receiving 2f + 1 consistent

replies it accepts this reply. Alternatively, we could allow clients to suspect the proxy

tail such that it can be removed in this case, just as in Zyzzyva and Shuttle.

It is possible that even in the case where the head is correct and timers are cor-

rectly set, view change can be triggered, since there might be too many re-chainings

and some request is not completed in the current view. There are two additional cases

that can inflict view changes: the head is faulty, and timers are not set correctly. As

illustrated in Algorithm 7 in Section 4.2.5, the failure detection (re-chaining) timer

∆1 and view change timer ∆2 (for request processing) are adjusted in every view

change when a replica receives the 〈NewView〉 message. They together can even-

190

tually move the system to some new view where the head is correct, timers are set

correctly, and the re-chaining time is readily available. In the new view, replicas will

reach an agreement and clients eventually receive their request replies.

To avoid frequent view changes, the timers are adjusted gradually. It is worth

mentioning that in contrast to PBFT [18], we separate timer ∆2 for request process-

ing from the timer ∆3 to wait for 〈NewView〉. ∆3 will be adjusted to g3(∆3), when

a replica collects 2f + 1 〈ViewChange〉 messages but does not receive 〈NewView〉

message on time.

BChain follows the “amplification” step from f + 1 to 2f + 1 〈ViewChange〉.

Namely, if a replica receives f + 1 valid 〈ViewChange〉 messages from other replicas

with views greater than its current view, it also sends a 〈ViewChange〉 message for

the smallest view. This prevents starting the next view change too late.

Note that faulty replicas (other than the head) cannot cause view changes, for

the same reason as other quorum based BFT protocols. Also, although the faulty

head can cause a view change, the head cannot be faulty for more than f consecutive

views.

To prevent the timeouts ∆1 and ∆2 from increasing unbounded, we levy restric-

tions on the upper bounds for both. Slow replicas will be identified as faulty ones,

which helps the system maintain its efficiency.

191

