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Abstract—Consensus is a fundamental approach to imple-
menting fault-tolerant services through replication. It is well
known that there exists a tradeoff between the cost and the
resilience. For instance, Crash Fault Tolerant (CFT) protocols
have a low cost but can only handle crash failures while Byzantine
Fault Tolerant (BFT) protocols handle arbitrary failures but
have a higher cost. Hybrid protocols enjoy the benefits of both
high performance without failures and high resiliency under
failures by switching among different subprotocols. However, it
is challenging to determine which subprotocols should be used.
We propose a moving target approach to switch among protocols
according to the existing system and network vulnerability. At
the core of our approach is a formalized cost model that evaluates
the vulnerability and performance of consensus protocols based
on real-time Intrusion Detection System (IDS) signals. Based on
the evaluation results, we demonstrate that a safe, cheap, and
unpredictable protocol is always used and a high IDS error rate
can be tolerated.

Index Terms—Consensus, state machine replication, crash fault
tolerance, Byzantine fault tolerance, moving target defense.

I. INTRODUCTION

Consensus is a generic technique that implements fault-
tolerant services through replication. It is critical to achieve
both reliability and availability in various online services and
cloud computing applications, including Google’s Chubby [6],
Amazon Web Services [1], and VMware’s vSphere [2, 3].
Depending on the types of failures we aim to tolerate, various
protocols are designed with different security guarantees and
performance characteristics. It is in general known that there
exists a tradeoff between the resiliency and the cost of the
consensus protocols. Namely, a low cost protocol with low
redundancy and high performance can only handle limited
types of failures. For instance, Crash Fault Tolerant (CFT)
protocols are less redundant but can only tolerate crash fail-
ures. In comparison, Byzantine Fault Tolerant (BFT) protocols
handle arbitrary failures but are very expensive, which may be
an overkill to use most of the time.

Several approaches have been proposed to switch among
different protocols depending on an estimation of failures in
the system [16, 20, 23, 37], which enjoy the benefits of both
high performance in the normal cases and high resiliency
under failures. However, there still exist some issues when
handling a wide range of failures. First, most approaches em-
ploy two subprotocols. Therefore, there is usually an obvious
performance degradation even when it is not necessary to use
a high cost protocol. Second, if we employ more than two
subprotocols to not suffer from large performance degradation,

it is hard to determine which one should be used according to
existing system and network vulnerability. Third, the switching
of protocols is usually deterministic and predictable, which
makes the system more vulnerable since the attackers have
enough time to collect protocol information, prepare, and
complete an attack.

In this paper, we propose a cost sensitive approach moti-
vated by Moving Target Defense (MTD) to build a resilient
consensus model that handles various types of failures accord-
ing to system and network vulnerability. At the core of our idea
is a formalized cost model that evaluates the vulnerability and
performance of leader-based state machine replicated fault-
tolerant consensus protocols. We use damage cost to represent
the vulnerability of the protocols and operational cost to
evaluate the running cost. The input of the cost model is
a set of probabilities from IDS, each of which represents
the certainty of a replica being normal, crash, or Byzantine.
We view the IDS as an oracle that provides the probabilities
periodically. The underlying idea is that if the IDS can provide
a rough reference about which replica(s) might be faulty
without actively participating the protocols, we will be able
to use a protocol that causes the lowest damage to the system
while achieving high performance.

Due to the use of our approach, a protocol that is safe,
cheap, and unpredictable is always used. According to the
cost model, we select a cluster of protocols with low cost
according to existing system vulnerability. By switching pro-
tocols randomly among the cluster, an unpredictable protocol
is always used. In addition, the formalized cost model can also
be viewed as a theoretical model to analyze the consensus
protocols. We illustrate our cost model with 8 consensus
protocols and our evaluation results show that the selection of
the protocols naturally follows the properties of the protocols.
In addition, we handle crashing IDS through the use of a fail-
safe protocol and we also show in the evaluation that our
approach tolerates a high error rate for the IDS.

The contributions of the paper are summarized as follows.
(1) We propose a formalized cost model to evaluate the
vulnerability and performance of consensus protocols based
on real-time IDS signals, which can also be viewed as a
theoretical analysis model (§IV); (2) We illustrate our cost
model using 8 different consensus protocols (§V); (3) Based
on the cost model, we present a moving target consensus
approach to select a cluster of safe, cheap, and unpredictable
protocols (§VI); (4) Our evaluation results show that a cluster
of both safe and fast protocols is always selected. In addition,978-1-5090-3216-7/16/31.00 c©2016 IEEE



we tolerate a high IDS error rate and also handle the case
where the IDS crashes (§VII).

II. RELATED WORK

Most consensus protocols proceed in rounds [3, 7, 9, 13, 16,
23, 24, 35]. A number of approaches rely on (small) trusted
components to prevent equivocation and handle Byzantine
failures using fewer than 3f + 1 replicas [8, 12, 20]. For
instance, ByzID [12] relies on specification-based IDS [22]
to passively monitor the consistency of the messages. We also
rely on a trusted IDS that may fail by crashing. In contrast, we
employ the IDS to evaluate the vulnerability of the replicas
from the network and view it as an oracle.

A number of previous efforts have been made to evaluate
distributed algorithms [21, 34]. We use similar measures to
evaluate operational cost. In addition, we also include damage
cost to evaluate the vulnerability of the system.

The cost factors and cost model have previously been
proposed and their definitions are usually subjective to the
specific problems [29]. Lee et al. [25] discuss cost factors
related to intrusion detection: damage cost, response cost,
and operational cost. They assign values empirically to cost
factors based on the IDS results and improve the model by
reducing some of the cost factors. We use similar terms but
with different definitions for consensus protocols.

MTD has been applied to various of areas such as cyber
security [18] and mobile wireless networks [15, 33] using tech-
niques such as randomization [19]. In order to take advantage
of cost-sensitive model as well as randomization, we do not
always choose the minimum-cost solutions [25, 32] but take
into concerns of both vulnerability and running cost. Turtle
consensus [28] uses a MTD approach that switches between
CFT protocol in each round to handle DoS failures but the
switching of protocols is deterministic. In comparison, our
paper considers a wide range of failures.

III. PRELIMINARIES

In this section, we introduce the system model, our IDS
model, and the background of consensus protocols.

A. System Model

We consider a distributed system with n replicas P =
{p0, p1, · · · pn−1}. Each replica can be viewed as a state
machine following some protocol, where a protocol specifies
the communication between replicas. We distinguish the types
T of correctness for each replica: correct, crash, or Byzantine.
A correct node faithfully follows the corresponding protocol.
Faulty replicas may fail by crashing (stop executing the
protocol) or be Byzantine (behave arbitrarily). The Byzantine
failures we aim to handle are mainly caused by adversary
attacks from the network. We assume fair-loss links, where if
a message is sent infinitely often by a correct replica, a correct
receiver will receive the message infinitely often. Liveness is
ensured under partial synchrony [14]: synchrony holds after
some unknown global stabilization time.

B. IDS Model for Moving Target Defense

An Intrusion Detection System (IDS) monitors the cor-
rectness of each replica pi (near) real-time, which can fail
by crashing. It monitors the host and network devices and
detects events that could indicate an ongoing attack [11, 22,
27]. We view the IDS as an oracle that outputs a set of
signals (N,C,A) with three probabilities Pi,N , Pi,C , and Pi,A.
The three signals represent replica pi being Normal (correct),
Crashed, or under Attack (Byzantine). The three probabilities
represent the confidence of each signal, which are refreshed
periodically. The value of Pi,A is set to 0 initially or after
recovery. The IDS also evaluates the cost using our cost
model and notifies the replicas the protocol to run. There are
several ways to deploy the IDS. For example, we can deploy
a network-based IDS over a LAN with a passive architecture.
In a passive architecture, it monitors a copy of actual network
traffic while no traffic passes through the sensor [30].

C. Consensus Protocols

Consensus protocols tolerate a certain number of failures
through the use of redundant replicas. Correctness includes
safety and liveness. Safety guarantees that all the correct
replicas decide on the same value and liveness guarantees that
all the correct replicas eventually decide. In order to handle f
failures, different protocols may vary significantly regarding
the minimum number of replicas. We specify three types of
protocols: C-1 represents CFT protocols that require at least
f + 1 replicas where safety may not be guaranteed, C-2
denotes CFT protocols that require at least 2f + 1 replicas,
and B-1 represents BFT protocols that require at least 3f + 1
replicas. Without loss of generality, for each protocol that
requires at least n replicas, we assume there are n replicas.
When each protocol is run, safety of the protocol is guaranteed
only when the number of corresponding T failures does not
exceed f . Although replicas may be temporarily inconsistent,
they can be consistent after switching to another protocol in
our approach.

We consider leader-based consensus protocols that operate
in rounds, where in each normal round a client request is
received by replicas, assigned with a sequence number by the
leader, agreed by the replicas, executed, and eventually the
result is received by the client. The leader is also called the
primary, which initializes each round. We assume by default
the primary is p0. Other nodes are called backups or backup
nodes. Each protocol consists of several phases, where in each
phase each replica receives and authenticates certain number
of messages and sends messages to some replica(s).

We consider two classes of protocols: broadcast-based
and chain-based [13, 35]. Among broadcast-based protocols,
we further distinguish primary-backup approaches [5, 10, 17],
where primary can communicate with backups but backups do
not communicate with each other. In comparison, in regular
broadcast-based approaches [7, 20, 23, 24], replicas are fully
connected. In contrast, chain-based protocols organize replicas
into a logical chain and the head is considered the primary.



Most protocols have view change scheme where a backup
node takes over when existing primary is faulty. Some pro-
tocols have reconfiguration scheme to replace some faulty
replicas. Protocols may use MACs or digital signatures for
authentication. Unless otherwise mentioned, we assume MACs
are used. Every protocol has a checkpoint scheme, where a
replica periodically generates a snapshot of its state, signs a
checkpoint message, and sends to other replicas. After the
checkpoint becomes stable, previous messages are discarded.

IV. COST MODEL

In this section, we formalize the measurement of the costs
based on notations in TABLE I. Cost evaluation plays a very
important role in our approach to select protocols. Therefore,
to precisely evaluate cost factors and select appropriate pro-
tocols, we aim at cost metrics that follow these principles: 1)
Cost metrics should be measured consistently [26]. 2) Source
data should be cheap to gather in terms of time or money.
Based on our formalized cost model, the cost can be easily
calculated according to the IDS signals. 3) Cost metrics should
be evaluated to a value with an associated unit of measures
that characterize the value. We define damage cost as the
number of lost or delayed requests, and operational cost as
the time of running a normal round of the protocols. The
cost factors considered here are standard quantities that all
consensus protocols can adopt to perform the cost analysis.

Notation Meaning

Pi,N The probability replica pi is Normal/correct.
Pi,C The probability replica pi has Crashed.
Pi,A The probability replica pi is being Attacked/Byzantine.
t0 Transmission time between two replicas.
tc Transmission time between client and a replica.
t1 The time it takes for an IDS to report a crash or an attack.
Tm, Td The time it takes to verify or generate a MAC/digital signature.
TV The time it takes for replicas to move to a new view.
TR The time it takes for recovery/reconfiguration.
λ The number of requests in each checkpoint.
δ Number of incoming requests per second.
∆ Number of incoming requests since last checkpoint.

TABLE I
NOTATIONS.

Damage Cost (CD). The damage cost evaluates the vulnera-
bility of the protocol. We measure it as the sum of expected
number of requests that will be lost or delayed due to the
faulty replicas, as shown in Equ. (1). The input is a set of
probabilities Pi,N , Pi,C , and Pi,A for i = 0, · · · , n − 1. The
Ri,c and Ri,A are fixed values that denote the number of
requests that may be lost or delayed due to the failure of
the replica pi being T type where T = C or A. When we
consider the cost for each individual replica pi, we assume pi
is faulty and the number of T faulty replicas in P does not
exceed f .

CD =

n−1∑
i=0

(Ri,CPi,C + Ri,APi,A) (1)

The values for Ri,C and Ri,A depend on the identity of
replica pi and the protocol, as summarized below.

The primary crashes. For protocols that have view changes and
TV < t1, the incoming requests during TV time are lost since
nodes cannot process any other requests, i.e., R0,C = TV δ.
Otherwise, all the requests since the failure of the primary
will be lost, i.e., R0,C = t1δ. For simplicity, we only include
the case where TV < t1.
The primary is Byzantine. We assume that the last checkpoint
is stable for all the replicas. For CFT protocols with arbi-
trary failures, all the requests since the last checkpoint are
considered lost since there is no guarantee of the safety of
the protocol. Therefore, R0,A = ∆. In comparison, the BFT
approaches handle this case through view changes. Therefore,
the cost is the same with the previous case, i.e., R0,A = TV δ.
A backup node crashes. All the broadcast-based protocols
naturally handle the crash of backup nodes, i.e., there is
no cost for this case. However, chain-based protocols suffer
from backup failures. For instance, Chain [35] reconfigures
faulty replicas. Therefore, requests during reconfiguration are
delayed, i.e., Ri,C = TRδ.
A backup node is Byzantine. The correctness of the protocols is
closely related to the primary. In C-1 protocols, the requests
since last checkpoint will be lost, i.e., Ri,A = ∆. This is
because the case is indistinguishable from the case where the
primary is Byzantine. In contrast, in a broadcast-based C-2
protocol, correct replicas are still consistent if the primary is
correct. This is because the primary always sends consistent
messages to the replicas. On the other hand, most broadcast-
based BFT protocols handle backup failures. An exception
happens to protocols like Zyzzyva [23] since it employs two
subprotocols. Also, similar to the previous case, chain-based
protocols also suffer from backup failures.
Operational Cost (CO). The operational cost evaluates the
cost to run the protocols. We present two types, latency (CO,L)
and throughput (CO,T ), and both are evaluated in terms of
time according to similar metrics of previous work [34]. The
smaller the latency CO,L, the smaller the throughput CO,T ,
and the larger the actual throughput will be. In addition,
if the checkpoint is not required frequently, the cost of the
checkpoint is not included in the operational cost.
Latency CO,L. The latency cost is measured as the time
of a consensus round starting from the leader receiving the
request to the end of the round of agreement. It includes the
transmission time and the time for authentication. CO,L is
computed according to the following equation.

CO,L =

#phases∑
j=1

(nj,cTm + t0 + nj,1Tm + nj,2Tm) + ε (2)

In the above equation, nj,c is the number of MACs the
replica pj needs to verify and generate for the client, nj,1 is
the minimum number of MACs pj needs to authenticate in
each phase, and nj,2 is the number of MACs each replica
needs to generate in each phase. The cost is measured for
the normal case when there is no message congestion. Notice
that, although in broadcast-based protocols, all the replicas
need to run the same steps, they run concurrently. Therefore,
we measure the cost for each phase as the cost of a single



replica if all the replicas execute the same step. The total cost
will be the sum of cost for each phase. We also include a
variable ε, which includes the cost caused by switching to the
new protocol, e.g. physical cost of starting a new replica. For
simplicity, we do not include it in the examples in §V.
Throughput CO,T . CO,T evaluates the time for authenticating
and generating MACs or digital signatures of the bottleneck
node. This is due to the fact that the bottleneck replica can
continue processing new messages before a consensus round
completes. Therefore, the transmission time is not included.

CO,T =

#phases∑
j=1

(nj,cTm + nj,1Tm + nj,2Tm) (3)

V. CONSENSUS COST

We introduce the costs of 8 protocols to illustrate our
cost model, with both CFT protocols and BFT protocols.
Specifically, we survey the cost of two C-1 protocols, Remus
and Semi-Active, which can guarantee safety only when all
the replicas are correct. We also include two C-2 protocols,
Paxos and Chain, which are the state-of-the-art CFT protocols.
Finally, we present four BFT protocols, Aliph-Chain, BChain,
PBFT, and Zyzzyva, which have different performance char-
acteristics and are perfect for case study. In this section, we
first briefly introduce the protocols and then show their cost
using the notations in TABLE I.
Remus [9]: A primary-backup C-1 approach where the
backups periodically obtain checkpoints from the primary to
maintain the latest state. It can also be viewed as a semi-
passive approach [10]. In the presence of failures, the requests
since last one or two checkpoints will be lost depending on
the time IDS detects the failure. Namely, if t1δ is greater than
λ, a node has already been faulty the last stable checkpoint.
Therefore, two checkpoints will be lost. Otherwise, only one
checkpoint will be lost.

CD =


2λP0,C + ∆P0,A +

f∑
i=1

∆Pi,A if t1δ > λ

λP0,C + ∆P0,A +
f∑
i=1

∆Pi,A otherwise
(4)

CO,L = CO,T =
2λTm + Td

λ
(5)

Semi-Active [3]: A primary-backup C-1 approach where the
primary notifies the backups each incoming request so that all
the replicas execute them directly. Since backup nodes receive
all the requests from the primary, only those requests during
view changes will be lost, i.e., TV δ.

CD = TV δP0,C + ∆P0,A +

f∑
i=1

∆Pi,A (6)

CO,L = CO,T = (2 + f)Tm (7)

Paxos [24]: A broadcast-based C-2 approach with two phases:
the leader first notifies the backups of the incoming request;
each replica sends a message to all other replicas. If a replica
collects at least f + 1 matching messages, it executes the
request and sends a reply to the client.

CD = TV δP0,C + ∆P0,A (8)

CO,L = (5f + 3)Tm + 2t0 (9)

CO,T = (3f + 2)Tm (10)

Chain [35]: A chain-based CFT approach. The head receives
a request from a client and then sends along the chain towards
the tail and the tail replies to the client. When a replica crashes,
a non-faulty master node reconfigures the chain. When a node
fails, all the request during reconfiguration will be lost.

CD = TRδP0,C + ∆P0,A +

2f∑
i=1

TRδ(Pi,C + Pi,A) (11)

CO,L = 2(2f + 1)Tm + 2ft0 (12)

CO,T = 2Tm (13)

Aliph-Chain [16]: A chain-based BFT approach. Each replica
needs to verify MACs from at most f + 1 previous replicas
and also append MACs for up to f + 1 subsequent replicas
or the clients. The client accepts the reply message when it
receives a message from the tail with f+1 valid MACs. In the
equations, function F (i) represents the latency up to replica
pi.

CD = t1δ(P0,C + P0,A) +

3f∑
i=1

(t1 + F (i))δ(Pi,C + Pi,A) (14)

CO,L=

f−1∑
i=0

(f+i+2)Tm+

2f−1∑
i=f

(2f+2)Tm+

3f∑
i=2f

(4f−i+2)Tm+3ft0

(15)
CO,T = (2f + 2)Tm (16)

BChain [13]: A chain-based BFT approach. Being different
from Chain and Aliph-Chain, only the first 2f + 1 replicas
form a chain and the last f replicas serve as backups which
are reconfigured periodically and the message is sent from the
head to the (2f + 1)th replica. It uses similar authentication
scheme with Aliph-Chain. All the first 2f + 1 replicas notify
the rest f replicas the execution order so that they are also
up-to-date. When failures occur, the chain is reordered by the
head with at most f rounds of reconfigurations.

CD = TV δ(P0,C + P0,A) +

2f∑
i=1

TRδPi,C + 3fTRδ

2f∑
i=1

Pi,A (17)

CO,L =

f−1∑
i=0

(2f + 2i+ 3)Tm +

2f∑
i=f

(6f − 2i+ 3)Tm + 4ft0 (18)

CO,T = (4f + 3)Tm (19)

PBFT [7]: A leader-based BFT approach with three phases: in
the first phase the leader notifies the replicas of the incoming
request; replicas exchange their messages until each correct
replica collects at least 2f+1 matching messages in the second
and third phase. Replicas then reply to the clients.

CD = TV δ(P0,C + P0,A) (20)

CO,L = (13f + 3)Tm + 3t0 (21)

CO,T = (10f + 2)Tm (22)

Zyzzyva [23]: A leader-based BFT approach where clients
participate. The leader first notifies the replicas and the replicas
directly send a reply to the client. If the client receives
matching replies from all the replicas, it accepts the message.
If it receives at least 2f +1 matching messages, it sends them
to all the replicas. The replicas then commit the request.

CD = TV δ(P0,C + P0,A) +

3f∑
i=1

(
t1

(25)(a)
−

t1

(25)(b)
)(Pi,C + Pi,A) (23)

CO,L =

{
(6f + 3)Tm + t0 if 3f + 1 matching
(10f + 5)Tm + t0 + 2tc if 2f + 1 matching (24)

CO,T =

{
(6f + 2)Tm if 3f + 1 matching (a)
(8f + 3)Tm if 2f + 1 matching (b)

(25)



VI. A MOVING TARGET CONSENSUS APPROACH

In this section, we first briefly overview our approach and
introduce the procedures for switching protocols. Then we
show our moving target algorithm for selecting protocols in
details. Finally, we show the lower bound for the IDS values
and discuss the case when IDS crashes.
Overview of the Protocol. We illustrate our approach in
Fig. 1. It contains three components: the IDS, a set of available
consensus protocols, and a set of replicas. The IDS monitors
the correctness of the replicas and periodically evaluates the
costs of the protocols based on the Moving Target Algorithm.
It selects a protocol and sends configuration messages to the
replicas. Namely, by default a cluster of protocols is selected
and a random one is used periodically on a set of replicas P . If
the damage cost of existing protocol is higher than a threshold,
the IDS selects a new cluster of protocols. The IDS can also
select a set of new replicas P ′ according to the correctness of
the replicas. After receiving the configuration message from
the IDS, the replicas switch to the new protocol following the
procedures in Moving Target Consensus.

The underlying idea is that given the IDS indication of
failures of some replicas, running the same protocol may cause
a large number of lost or delayed requests. If the damage is
higher than expected, we should select a set of protocols that
causes lower damage while still achieving good performance.
The cost model provides the flexibility of selecting the right
protocols according to both network and system vulnerability
and user requirements.

Pi,C
Pi,N

MTD
Alg

A

IDS

default

π.CD>S

π.CD>S′

Cluster 1
1 2

3 4

Cluster 2
5 6

7

Cluster 3 8 9

P P ′

P P ′

P P ′

Fig. 1. Moving Target Consensus

Moving Target Consensus. We assume existing protocol π
is run on a set of replicas P . Replicas periodically generate
checkpoints and authenticate them using digital signatures. In
addition to the regular checkpoint steps of the protocols, if
π is a C-1 protocol, we let the replicas also forward their
checkpoint messages to the IDS.

The IDS updates the costs for all the protocols and sends a
configuration message to the replicas periodically. A config-
uration message includes a protocol π′, a set of replicas P ′,
and the id of a default primary. A protocol π′ is randomly
selected 1) periodically in the same cluster of π, or 2) when
the damage cost of π is higher than the threshold S. In the
latter case, a new cluster is selected and a random one is used,
as we will discuss in Algorithm 1. All the replicas in both P
and P ′ also forward the configuration message to each other
to guarantee that the configuration is learned.

If P ′ is a subset of P , the leader in P ′ initializes protocol
π′ (more details later) and replicas start executing the pro-
tocol. Otherwise, replicas need to first obtain the last stable
checkpoint and then the new primary initializes π′.

There are two cases for replicas to obtain the last stable
checkpoint. If π is a C-1 protocol, the replicas in P ′ obtain
a stable checkpoint directly from the IDS. In all other cases,
replicas in P ′ need to obtain checkpoints from P . Namely,
after receiving a configuration message from the IDS, replicas
in both P ′ and P send checkpoints to each other. In a
checkpoint, with a sequence number greater than the last stable
checkpoint, a replica includes all the committed requests in O
and all the accepted but uncommitted requests in U . For C-1
protocols and Aliph-Chain, all the requests are included in U .
For C-2 protocols, if a replica receives matching message from
2f+1 replicas during protocol π, the request is included in O
and other requests are included in U . For B-1 protocols besides
Aliph-Chain, each replica includes the committed requests
according to the protocols, e.g., a valid ack in BChain, etc. If
the new primary receives matching checkpoints from at least
f + 1 replicas, it starts π′.

In order to initialize π′, the primary selects the last stable
checkpoint and uses the state and sequence number l. The
primary then determines L where l+L is the largest sequence
number found in O and U . For each sequence number, the new
primary selects a request M if at least f + 1 replicas include
M in O or at least 2f + 1 replicas include M in U (or f + 1
for C-1 protocols). It then sends a message to all the replicas
in P ′. The message includes the last stable checkpoint and a
set of selected requests. After receiving the message, replicas
process the requests according to π′.

We show in Theorem 1 the switching of protocols is both
safe and live. We include the proofs for all the theorems in
the Appendix.
Theorem 1. Let protocol π on a set of replicas P be switched
to protocol π′ on a set of replicas P ′. If π′ tolerates failures
with type T and there are fewer than f T failures in both π
and π′, the switching of protocols is both safe and live.
The Moving Target Algorithm. The underlying idea of
out algorithm for selecting protocols is that based on the
IDS signals, we evaluate the cost of the existing protocol.
If the existing protocol is considered vulnerable regarding a
threshold S, we select a new cluster of protocols that is safe
and cheap. As shown in Algorithm 1, A represents all the
available protocols we can use, which initially includes all
the protocols. The function top(x,B.y) selects the xth largest
value according to the y value in set B. We set up the threshold
S to be the σ|A|th largest of the damage cost for protocols
in A where σ ∈ (0, 1). When the damage cost of existing
protocol is higher than S, indicating that existing protocol may
cause larger damage than expected, we start selecting a new
cluster. We first filter all the protocols with higher damage
cost from A. Then we select protocols with operational cost
smaller than the θ|A|th protocol according to the operational
cost, where θ ∈ (0, 1). Finally, we do an optional step among
protocols in R to further filter protocols with outstanding



damage cost. Namely, we set up another threshold Λ for
damage cost and filter the protocols with damage cost higher
than h + Λ where h represents the lowest damage cost for
protocols in R.

Algorithm 1 The Moving Target Algorithm
S ← top(σ|A|,A.CD)
if π.CD > S then {Damage cost of existing protocol is high}
A ← A.CD < S {Remove protocols with high damage cost}
O ← top(θ|A|,A.CO,L)
R← A.CO,L < O {Select protocols with low operational cost}
h← top(|R|,R.CD)

C ← R.CD < h+ Λ {Remove protocols with outstanding cost}

Notice that we use three parameters: σ, θ, and Λ. σ is used
for threshold S in order to determine whether the damage
cost of existing protocol is higher than a portion of protocols
in A. Similarly, θ is a threshold that is used to select a set of
protocols in A with the lowest operational cost. It is important
to select protocols with the similar performance given the
damage cost is lower than S. Lastly, Λ is an optional threshold
that is used to further choose protocols with low damage cost
based on the previous selection. The values of σ and θ can be
set up according to the requirement. However, the value of Λ
is important to guarantee that we select the right protocols. As
shown in Theorem 2, it is also related to the P values from
IDS.

Theorem 2. Let Ω be the damage cost caused by backups for
BFT protocols and Λ be the threshold for selecting a cluster.
In order for the approach to be safe, the following requirement
for IDS holds, where min(Ω) represents the BFT protocol with
minimum damage cost caused by all the backups.

P0,A >
Λ +min(Ω)

∆ + TV δ
(26)

Dealing with Crashing IDS. The IDS generates configuration
messages periodically. In order to handle the case where
IDS crashes, each replica starts a timer after receiving a
configuration message and waits for the next configuration
message. If the replica does not receive any configuration
message before its timer expires, it sends a [cids] message
to other replicas. If a replica receives more than f + 1 [cids]
messages, it also sends a [cids] messages to other replicas. All
the replicas then learn that the IDS has crashed. Then replicas
switch to a default fail-safe protocol, in our case PBFT. This
is due to the fact that PBFT, in general, has the lowest damage
cost among all the protocols we use. This guarantees that
the protocol is still safe when IDS crashes. Notice that C-1
protocols require only f + 1 replicas. In this case, the failure
of IDS can only be detected if all the replicas are correct.
MTD Entropy. Based on Shannon’s information entropy [31],
MTD entropy is formalized to evaluate the randomness and
effectiveness of the MTD model [36]. Specifically, the greater
the entropy of the configuration of an MTD system, the more
effective the approach is to prevent future attacks. We show
the entropy of our approach in Theorem 3.

Theorem 3. Let A = {π1, π2, · · · , πm} represent the m
protocols we can use. H(A) represents the MTD entropy,
which can be denoted as:

H(A) = H(π1, π2, · · · , πm) =
m∑
i=1

p(πi)log(p(πi)) (27)

p(πi) represents the possibility πi is selected:
p(πi) =

1

σ|A|
(28)

Given that Λ is large enough, after selecting a cluster, the
probability of each protocol being used is:

p(πi) =
1

(1− θ)(1− σ)|A|
(29)

Based on this theorem, if the switching of protocols is
deterministic, the entropy is 0 since the probability of each
protocol is 1. In comparison, in our example, |A| = 8 and let
σ = Λ = 0.2, the entropy for our approach is 8.68 initially
and 96.51 after switching. If we simply switch among all the
8 protocols, the entropy is 192.00. We conclude that due to the
unpredictability of our approach, we can also prevent further
attacks using the randomization method. If there are more
protocols in the same cluster, the effectiveness can be further
increased.

VII. EVALUATION

In this section, we show the evaluation of the effectiveness
of our cost model in selecting protocols and the IDS error rate
our approach can handle.

Setting λ Tm Td TR/TV t1/t0/tc δ ∆ P

1 10 0.5 1.0 0.5 1.0 10 15 0.001
2 10 0.5 1.0 0.5 5.0 10 60 0.01
3 10 0.5 1.0 0.1 1.0 10 20 0.01
4 10 0.5 1.0 0.1 10.0 10 105 0.1

TABLE II
EXPERIMENT SETTINGS. Tm , Td , TR , TV , t1 ,t0 , AND tc ARE MEASURED

IN MS. P IS THE DEFAULT VALUE OF THE REPLICAS UNLESS SPECIFIED.

Implementation and Settings. The implementation of the
protocols is based on Castro et al.’s implementation of PBFT.
We evaluate throughput under failures based on our cost model
using 0/0 benchmark, where the clients issue 0kB request and
receive 0kB replies. We test the throughput to demonstrate the
effectiveness of our cost model. Experiments are carried out on
DeterLab [4], utilizing a cluster of up to 20 identical machines
connected through a 100 Mbps switched LAN. Each machine
is equipped with a 3 GHz Xeon processor and 2 GB of RAM.

We use several parameters in our cost model. Among them,
the P values are the output of the IDS. The values of δ,
λ, and ∆ are all fixed or preset. In comparison, the values
of t0, t1, Tm, TV , and TR can be obtained through testing.
Although the values can be different for different protocols
or even for different rounds of each protocol, we can still
test them and use average values to measure the cost. For
instance, we measure t0 as the half of the average round trip
transmission time between any two correct nodes.

Additionally, we use IDS as an oracle in our cost model. We
assign different values to assess our cost model. We evaluate
our cost model using 4 settings, as shown in TABLE II, where
P represents the default values unless specified.
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Fig. 2. Damage cost (CD) vs. Operational Cost - Latency (CO,L) under setting 1 and f = 1. SA, Z, Z-1, Z-2 represent Semi-Active, Zyzzyva, Zyzzyva
with normal run, and Zyzzyva when at least one backup node fails, respectively.
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Fig. 3. Damage cost (CD) vs. Operational Cost -Throughput (CO,T ) under setting 1 and f = 1.
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Fig. 4. Evaluation of the cost model and the protocol.

Selection of Protocols. We first evaluate the effectiveness of
our cost model in selecting the “right” cluster of protocols, as
shown in Fig. 2 and Fig. 3 under setting 1 and f = 1. In each
experiment, the IDS reports a relatively high P value for one
replica, either crash or Byzantine. Based on the figures, we
notice that the protocols naturally fall into clusters. For the
case where the primary is Byzantine, protocols fall into two
clusters. As observed from Fig. 2(a) and Fig. 3(a), the damage
cost is high for the CFT protocols and much lower for the BFT
protocols. This observation correctly reflects the nature of the
protocols. On the other hand, in the case where the primary
crashes, the damage cost remains low since most protocols
have view changes, as shown in Fig. 2(b) and Fig. 3(b). We
observe similar results from the cases where a backup is faulty.
Being different from the case where the primary is Byzantine,
only Remus and Semi-Active (SA) have very high damage
cost compared to other protocols. This can be explained by
the fact that Remus and SA require only f + 1 replicas and
the protocols are no longer safe. For other CFT protocols like
Paxos, since the primary is correct, correct replicas are still

consistent.

Parameter θ. We evaluate the protocols to determine an
empirical value for θ, which is used to select protocols with
low operational cost. We use ellipses to show the selection of
the protocols in the figure. In practice, the threshold values
represent ranges of cost values. As observed in Fig. 2 and
Fig. 3, the threshold value can largely impact the selection of
protocols. For instance, if we use a tight value, as illustrated in
the small ellipses, protocols in general fall into the same cate-
gory (either CFT or BFT). The only exception we notice is the
case where a backup node fails. In this case, CFT protocols and
BFT protocols fall into the same cluster, as shown in Fig. 3(b)
and Fig. 3(d). However, the protocols are still safe since the
primary is correct. The downside is the possibility that very
few number of protocols are selected and the selection of
protocol becomes predictable. In comparison, more protocols
will be selected if we use a larger threshold. However, it is
possible that “wrong” protocols will be included. In most cases
for the protocols we illustrate, 2 or 3 is an appropriate number,
which indicates that θ = [0.25, 0.375].



Throughput. We assess the throughput under failures. We use
10 concurrent clients and let f = 2 and σ = θ = 0.375
based on setting 1. We inject a crash failure at time t = 1s
and a “Byzantine” failure at t = 2s where the IDS reports
a high probability within 0.2 ms. As illustrated in Fig. 4(a),
we first do not include periodic switching among protocols
and show two typical cases. In the first case, SA is run in the
beginning, Paxos is used after a crash failure is injected, and
Zyzzyva is selected after Byzantine failures. In the second
case, Remus is first run and PBFT is used after failures,
where the performance degrades suddenly. We then show in
Fig. 4(b) with the same setting but protocols in the same
cluster are switched every 0.2 ms. It can be observed that if
protocols are switched with a tight bound on operational cost,
the performance is in general consistent, where the switching
of protocols generates some overhead.
Threshold Λ and IDS Error Rate. The value Λ is used
to select the protocol with certain damage cost in C and we
have shown the theoretical bound. In order to determine an
appropriate Λ value, we show the minimum requirement for
P0,A so that the damage cost of any CFT protocol is lower than
the highest of the BFT protocols. This is considered the worst
case where the CFT protocol might fall in the same cluster
with BFT protocols. We evaluate the costs for all the settings
by changing the Pi,A values. In each setting, we compare the
damage cost of Paxos with that of BChain and Zyzzyva. This is
because, in general, Paxos has the lowest damage cost among
CFT protocols while BChain and Zyzzyva have the highest
damage cost among BFT protocols. Notice that Aliph-Chain
itself may have high damage cost, but our approach filters the
protocols with outstanding cost. As shown in Fig. 4(c), there
exist some settings where the IDS must report a high P0,A

value, especially when f is large. In most cases, the IDS does
not need to report a P with value higher than 0.5. Based on
our observation, we can handle a high IDS error rate so as for
the approach to be safe.
Limitations. Our cost model has several limitations. First, it
cannot be used to evaluate the case where the number of faulty
nodes exceeds f . As shown in Fig. 4(d), we use setting 1 and
f = 2. Pi,C and Pi,A for replica 0, 1, and 2 are 0.9. It can be
observed that the damage costs for the protocols such as Paxos
and PBFT are still low. This is because the cost is measured
by assuming that fewer than f faulty replicas are present.
Second, as we have shown previously, a high IDS error rate
can be tolerated. However, performance can be degraded due
to inaccurate IDS results, i.e., when IDS reports an attack
while the replicas do not fail. Third, the protocols with high
damage cost are removed when the IDS reports more failures.
However, we do not provide a scheme to add protocols into the
set. This problem can be resolved by periodically recovering
the replicas and adding protocols to A.

VIII. CONCLUSION

In this paper, we present a moving target consensus ap-
proach. At the core of our approach is a cost model that can
be used to evaluate the damage cost and the operational cost

for leader-based consensus protocols that operate in rounds.
Based on real-time Intrusion Detection System signals about
each replica being correct, crash, or Byzantine, the damage
cost evaluates the vulnerability of the protocols while the
operational cost evaluates the performance of the protocols.
Our approach enables the use of a safe, fast, and unpredictable
protocol according to existing system vulnerability. In addi-
tion, the cost model can also be viewed as a theoretical model
to analyze the characteristics of the consensus protocols.
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APPENDIX

A. Proof of Theorem 1

Proof. We first prove the following lemmas and then show the
correctness of the theorem.

Lemma 4. For all the BFT protocols, if a correct replica
includes a request M in O with the same sequence number
N , at least 2f + 1 replicas accept M with N .

Proof of Lemma 4: The lemma simply follows the correct-
ness of the protocols and we ignore the details here. �

Lemma 5. If π′ is run on the same set or a subset of replicas
of π, i.e., P ′ ⊆ P , the switching to protocol π′ is both safe
and live.

Proof of Lemma 5: If π′ is run on the same set or subset
of replicas P , all the replicas maintain the same state from π.
The lemma can then be proved by showing that 1) The new
primary can select a set of requests based on the execution
history for the switching to be live, and 2) If a correct replica
has committed a request, the request will be selected by the
new primary for the switching to be safe. Notice that if the
primary is not correct, view changes will occur until a correct

primary is selected. The correctness of view change is proved
according to protocol π′ and we only consider the case where
a correct primary ensures the safety during the switching of
protocols.

If both π and π′ are CFT protocols, all the committed and
uncommitted requests must be consistent since there are only
crash failures. Therefore, the primary can order the requests
based on the execution history and the switching of protocols
is both safe and live.

Otherwise, if π is a BFT protocol, the primary is able to
proceed since if fewer than 2f + 1 replicas have committed
a request, it selects null. It is also not possible where two
sets of f + 1 replicas both include M in the O. This can be
proved by contradiction where in each set there is at least one
correct replica, e.g., p1 committed M and p2 committed M ′.
In both cases, according to Lemma 4, at least 2f + 1 replicas
that have already accepted M or M ′. Therefore, at least one
correct replica has accepted both M and M ′, a contradiction.
Therefore, the switching of protocols is live.

We then prove that if a correct replica has committed a
request then the primary will select it. This can also be proved
by contradiction assuming a correct replica pi has committed
a request M with sequence number N but the primary selects
M ′. If the primary assigns M ′ with N , there are at least f+1
replicas that include M ′ in the O set, among which there is
at least one correct replica. Based on Lemma 4, it indicates
that in π at least 2f + 1 replicas has accepted M ′. However,
since pi has committed the request M , at least 2f+1 replicas
has accepted M . Therefore, there must be at least one correct
replica that has accepted both M and M ′, a contradiction.
Therefore, the switching of protocol is safe and the lemma
follows. �

Lemma 6. A correct latest checkpoint can be collected based
on the replicas in P running π.

Proof of Lemma 6: If we use new replica(s) for protocol
π′, each new replica obtains checkpoints from P and the new
primary selects one with at least f + 1 signatures and orders
the requests with a sequence number greater than the latest
stable checkpoint. If π is a C-1 protocol, the replicas must
send their signed checkpoint by the primary to the IDS so that
IDS can transfer the checkpoint to the new replicas. Since we
assume IDS is benign and can only fail by crashing, the new
replicas will receive matching checkpoints and the correctness
follows. Otherwise, if π is a B-1 protocol, the correctness
simply follows the checkpoint scheme for BFT protocols and
we ignore the details here. Lastly, if π is a C-2 protocol and
there are Byzantine failures, it is possible that correct replicas
have inconsistent states and checkpoints. However, the new
primary is able to find a stable checkpoint if there exists a
checkpoint with at least f + 1 signatures and it is not possible
that there exist two inconsistent checkpoints since there are
2f+1 replicas. Since checkpoints from replicas can be verified
by any replicas due to the use of digital signatures, all the new
replicas will accept the checkpoint by the new primary. �



Lemma 7. If π′ is run on a larger number of replicas than
π, i.e., |P| < |P ′|, the switching to protocol π′ is both safe
and live.

Proof of Lemma 7: As we show in Lemma 6, if we use
new replicas, the primary is able to select a stable checkpoint.
Therefore, during the switching of protocols there are three
cases for ordering requests with sequence number greater than
last stable checkpoint: 1) π is a C-1 protocol and π′ is a C-2
protocol, 2) π is a C-1 protocol and π′ is a B-1 protocol, and
3) π is a C-2 protocol and π′ is a B-1 protocol. The first case
is trivial due to the fact that all the replicas are benign and the
uncommitted requests are consistent. Therefore, the primary
will be able to select a request for each sequence number. We
then show the correctness the other two cases.

In the second case, if π is a C-1 protocol like Remus, the
new primary selects null request for all the sequence numbers
from l to l+L since backups keep their states consistent from
the checkpoints. Otherwise, replicas will include their executed
requests in U instead of O. The new primary only selects
requests for each sequence number if uncommitted requests
are matching for all the replicas. In this case, at least one
correct replica has accepted the request. Therefore, the primary
can select requests easily and the requests must be accepted
by correct replicas. The correctness therefore follows.

In the third case, O includes requests where the replica
collects 2f + 1 matching messages in π for C-2 protocols
according to our consensus model. We first show safety that
any committed requests by a correct replica will be included
by the new primary. We prove by contradiction by assuming a
correct replica pi commits a request M with sequence number
N and the new primary includes M ′ during the switching of
protocols. According to our approach, if pi includes M in
O, pi receives matching messages for M with N from all the
2f+1 replicas, among which at least f+1 of them are correct.
Similarly, if the new primary in π′ selects M ′ for N , it finds
that at least f + 1 replicas include M ′ for N in O or at least
2f + 1 replicas include M ′ in U . If at least f + 1 replicas
include M ′ in O, at least one correct replica includes M ′ for
N and the correct replica receives 2f + 1 matching messages
with M ′, among which at least f + 1 replicas are correct. If
at least 2f + 1 replicas include M ′ in U , it is straightforward
that at least f + 1 correct replicas accept M ′. Since there are
only 2f + 1 replicas in π, there exists at least one correct
replica that accepts both M and M ′ for N , a contradiction.
Therefore, the protocol is safe.

We only need to prove liveness for the third case where
the primary will be able to select a request for each sequence
number. We show that it is not possible where there exists M
and M ′ with the same sequence number, at least f+1 replicas
include in O or 2f+1 replicas include in U . It is trivial that if
2f + 1 replicas include a request in U , all the replicas accept
the request. If at least f + 1 replicas include a request in O,
at least one of them is correct. The correct replica must have
received matching messages from 2f + 1 replicas in protocol
π. Therefore, it is not possible that there exists M and M ′

with the same sequence number. The switching to protocol π′

is live and the correctness of the lemma follows. �
We now show the correctness of the theorem. During the

switching of protocols, since we use f + 1 replicas for C-1
protocols, 2f+1 for C-2 protocols, or 3f+1 for B-1 replicas,
there are in total three cases: 1) the new protocol runs on the
same number of replicas, 2) the new protocol runs on more
replicas, and 3) the new protocol runs on fewer replicas. We
have already show in Lemma 5 the first two cases are safe
and live if P ′ ⊆ P . We also include the case where if new
replicas are used in π′, all the replicas will be able to use
a consistent checkpoint and state in Lemma 6. Notice that if
there are new replicas in P ′, replicas must be able to obtain
consistent checkpoint from P since if π′ runs on the same
number or smaller number of replicas, the type of failures π′

tolerates is weaker than or the same with π. Therefore, all the
new replicas in P ′ can obtain consistent state. Finally, we also
show in Lemma 7 the last case is safe and live. The correctness
of the theorem then follows.

B. Proof of Theorem 2

Proof. In order for our approach to be safe, we always need to
guarantee that in the worst case when the primary is Byzantine,
the damage cost of any CFT protocol is high enough so that
it does not fall into the same cluster with other BFT protocol.
Therefore, when the CFT protocol that has the lowest damage
cost is greater than any BFT protocol, no CFT protocols will
fall into the same cluster with BFT protocols. This requires a
value of P0,A that is high enough regarding the threshold for
selecting a cluster. We notice that Paxos has the lowest damage
cost among the CFT protocols we illustrate, which has damage
cost as shown in Equ. (8) and all the BFT protocols with view
changes have the same pattern as follows.

CD = TV δ(P0,C + P0,A) + Ω (30)

Ω represents the expected damage cost from the failures
of backup nodes. Therefore, the following equation follows
according to the selection of C in Algorithm 1.

TV δP0,C + ∆P0,A > TV δ(P0,C + P0,A) +min(Ω) + Λ (31)

In Equ. (31), min(Ω) represents the minimum damage cost
by backups among all the BFT protocols. We then have the
following:

(∆− TV δ)P0,A > min(Ω) + Λ (32)

Therefore, Theorem 2 follows.

C. Proof of Theorem 3

Proof. Since the threshold S is set to σ|A|, in the beginning
there are σ|A| replicas and the probability follows.

According to Algorithm 1, we first filter the protocols with
damage cost greater than σ|A| protocols and there are |A′| =
(1−σ)|A| protocols. Next, we filter protocols with operational
cost greater than θ|A′| protocols. Therefore, there are (1 −
θ)(1− σ)|A| protocols in R. If we assume a large enough Λ
value, set C has (1 − θ)(1 − σ)|A| protocols and we switch
among them, the theorem then follows.


