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ABSTRACT
Critical Infrastructure systems(CIs) such as energy, water,
transportation and communication are highly interconnected
and mutually dependent in complex ways. Robust modeling
of CIs’ interconnections is crucial to identify vulnerabilities
in the CIs. We present here a national-scale Infrastructure
Vulnerability Analysis System (IVAS) vision leveraging Se-
mantic Big Data (SBD) tools, Big Data, and Geographical
Information Systems (GIS) tools. We survey existing ap-
proaches on vulnerability analysis of critical infrastructures
and discuss relevant systems and tools aligned with our vi-
sion. Next, we present a generic system architecture and
discuss challenges including: (1) Constructing and manag-
ing a CI network-of-networks graph, (2) Performing analytic
operations at scale, and (3) Interactive visualization of ana-
lytic output to generate meaningful insights. We argue that
this architecture acts as a baseline to realize a national-scale
network based vulnerability analysis system.

Keywords
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1. INTRODUCTION
About a decade ago, the World Wide Web Consortium

(W3C) developed a set of standards around the vision of
establishing a machine-understandable Web, so called Se-
mantic Web. In particular, the Resource Description Frame-
work (RDF), SPARQL Protocol, and RDF Query Language
(SPARQL) were introduced to build a fundamental data
model and the query language enables flexible schema-free
data interchange on the Semantic Web.

Interestingly, today, we are witnessing that data scientists
and practitioners frequently exploit the Semantic Web stan-
dards and tools for data analysis. According to the statis-
tics[2], as of now, over 85 billion triples from 3426 datasets
have been published. Distributed execution environment
via multiple SPARQL end points opens up the potential of
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holistic knowledge discovery from disparate large-scale data
sources, which is very attractive to big data researchers.
Even more, the advent of advanced large-scale RDF data
processing infrastructures such as Cray’s uRiKA-GD, which
is a super computer specialized for RDF-processing, and
their applications have shown the promising capabilities and
use cases of Semantic Web technologies for big data research
and applications.

In this study, we specifically focus on one of the most
important real-world problems – vulnerability analysis and
understanding cascading effects due to various perturbations
in Critical Infrastructures (CIs). CIs such as transporta-
tion, water, and energy are significant to sustaining day-
to-day commodity flows of economic and national security
concerns. The nature of modern infrastructures is such that
failures in certain critical components can trigger widespread
cascading failures causing ripple effects throughout regional
or national scales, as shown in historical worldwide extreme
events like the 2003 North American blackout and Hurricane
Sandy in 2012. CIs are mutually dependent in complex ways,
not just physically but through a host of IT/communication
technologies. They also display an adaptive behavior influ-
enced by past experience such as aging and adjustment to
disturbances, etc [37].Robust modeling of the complex in-
terdependencies of these CIs and performing vulnerability
assessment are significant research challenges. While nu-
merous researchers have focused on critical infrastructure
dependencies [15, 41, 26], most of those efforts still consider
individual or a small number of critical infrastructures and
perform qualitative as opposed to quantitative analyses, and
they are not successful to consider a national-scale evolving
network due to various challenges, as since the difficulty can
be further exacerbated by the breadth and complexity of the
large-scale CIs.

We envision that SBD technologies are well-aligned with
many challenges of realizing a national-scale Infrastructure
Vulnerability Analysis System (IVAS). This study aims to
open up a new research area in the SBD research community
by providing a vision of a SBD-based network based vulner-
ability analysis system. However, solely adopting SBD tech-
nologies for the problem does not simply solve all the issues,
we investigate how we can create a synergy of using other
Big Data and GIS technologies to complement limitations
or lacking capabilities of SBD tools. The rest of the paper
is organized as follows. In Section 2, we present background
on vulnerability analysis of critical infrastructures and var-
ious related systems and tools that can be employed for an
IVAS. In Section 3, we present a generic IVAS architecture



and discuss its challenges in detail. Finally, we summarize
and conclude our study.

2. BACKGROUND

2.1 Infrastructure vulnerability analysis
Modeling interdependencies is not a trivial task, since it

involves consideration of a wide range of dimensions such
as the type of failures (common cause failure/cascading fail-
ure), type of coupling (tight/loose), state of operation (nor-
mal/stressed/post event), etc. [37]. For instance, during the
hurricane Sandy in 2012, new interdependency links tend
to be formed due to backup generators needing fuel, which
depend on oil and gas and transportation networks. One
of the most important dimensions is the type of interde-
pendencies (physical, geographic, logical, and cyber). For
instance, there exists a physical interdependency between
power substations and oil refineries for energy, water stream
network and generation power plants for cooling water, and
a geographical interdependency among multiple CIs in the
same geographic region hit by an earthquake. These inter-
actions exist across multiple scales of space/time [35]. The
shear breadth and structural complexity of our infrastruc-
ture magnifies these challenges.

Previous research efforts in studying infrastructure inter-
dependencies have used various modeling and simulation ap-
proaches which are broadly categorized into empirical, agent
based, system dynamics based, economic theory, and net-
work based approaches [34]. All these approaches work at
the intersection of at most two CIs and do not expand their
scope of investigation to cascading effects in a modern inter-
connected system. As an example, ORNL’s EARSS models
limit the prediction of propagation consequences of weather
related threats such as hurricanes to two infrastructure net-
works like electric grid (substations affected) and service ar-
eas (population) impacted using GIS based approaches[11].
Most of the existing analysis has been restricted to just a
small geographical region/network location due to limited
access to real-world datasets, and increased problem and
computational complexity.

2.2 Semantic Big Data (SBD)
SBD Standards. The World Wide Web Consortium

(W3C) published a specification of Resource Description
Framework (RDF) in 1999, which is a standard data model
originally designed to represent resources on the Web for
data exchange. Formally, A RDF dataset is a set of triples
in 〈subject〉 〈predicate〉 〈object〉, where subject denotes a glob-
ally unique resource, object denotes either a unique resource
or a literal (i.e., a string or a number), and predicate denotes
a relationship between the subject and object. SPARQL
Protocol And RDF Query Language (SPARQL) is a stan-
dard query language for RDF datasets endorsed by W3C.
SPARQL queries are represented by a set of triple patterns
that identifies a sub-graph of interest in the RDF dataset.

RDF can be considered as a linked-data, or a graph data
model, since triples in a RDF dataset naturally form a graph,
where subjects and objects represent nodes and predicates
represent edges between them. Accordingly, SPARQL is
a query language for graph (or linked-) datasets which re-
trieves sub-graph patterns from the graph that a RDF dataset
composes. As many critical infrastructures form a network
topology (e.g., streams, roads, power transmission lines, etc.),

RDF and SPARQL can naturally represent and query CI
data sets. The graph representation of CI has an advantage
that it can provide intuitive visualization to CI operators.
We also need to note that CI datasets can be heterogeneous
in many ways including their schema, level-of-abstraction,
granularity of information, unit of measure, etc. Having a
specific fixed-schema structure data could significantly limit
system’s flexibility. RDF and SPARQL are promising stan-
dards for storing and querying various kinds of entities and
their relationships without having a specific schema, which
is another reason why they are well-aligned with the needs
of dealing with CI datasets.

Semantic Big Data for large-scale data analysis.
Representing national-scale, heterogeneous CI datasets us-
ing the RDF model can result massive number of RDF triples.
Despite of RDF and SPARQL’s theoretic advantageous fea-
tures, if there is no way to analyze such large-scale datasets
in efficient and scalable ways, it is not a feasible approach
to take. Earlier conventional triplestores running on a single
machine such as Jena[10], Sesame [14], and RDFSuite [9] are
not scalable enough to handle such large datasets. Today,
thanks to recently advanced software and hardware tech-
nologies, advanced Semantic Web tools and systems, namely
SBD technologies, are capable of large-scale RDF data pro-
cessing.

Researchers developed various distributed triplestores such
as SPARQLVerse [31], TriAD [22], and 4Store [24], which
store large RDF datasets in multiple commodity machines
and process SPARQL queries in parallel on the clustered
machines. On the other hand, Cray presented uRiKA-GD,
which is a massive-scale RDF data processing super com-
puter, developed around their multi-threaded shared-memory
hardware XMT2. These SBD technologies have enabled
data researchers and practitioners to exploit the SBD tools
not only for RDF storage and query but also for complex an-
alytic purposes. To be more specific, the SBD tools can be
used for Graph analysis, which is the general term of unveil-
ing useful knowledge implied in graphs [30]. The increasing
number of applications and researches in a wide range of
domains (e.g., healthcare [25], biology [39], medical research
[5], etc.) also show the usefulness of the SBD technologies
for data analysis.

2.3 Big Data and GIS.
Besides the Semantic Web community’s efforts, a num-

ber of Big Data tools and Geographic Information Systems
(GIS) have been developed so far. In this section, we briefly
cover some of these systems that can be utilized to comple-
ment SBD technologies for infrastructure analysis.

Google’s MapReduce framework [18] is developed for pro-
cessing large-scale datasets on commodity clusters. MapRe-
duce has been shown to be useful and effective in various
Big Data applications. However, it has a limitation that
its processing scheme is not suitable for iterative machine
learning algorithms, as it writes intermediate data to files at
each iteration. Spark [42] has gained much attention in dis-
tributed computing with commodity clusters since its pro-
cessing scheme works well for iterative algorithms. Spark
allows programmers to cache data in Resilient Distributed
Datasets (RDDs) distributed in memory of cluster nodes
without writing in files, it therefore provides much faster
iterative MapReduce computations. These tools have been
widely used in many fields of data practices, and they can



be useful for infrastructure analysis system in many ways.
Infrastructure analysis strongly involves handling geograph-

ical data. Conventional SBD tools do not support special-
ized geographical operations, so combinational usage of SBD
tools and Geographical Information Systems (GIS) should
be carefully considered. GIS covers a wide range of systems
and many research topics, but in general, main capability
is to efficiently store, retrieve, analyze, and visualize spatial
data. For the storage and retrieval purpose, several existing
geographical DataBase Management Systems (DBMS) can
be employed, where a geographical DBMS is a specialized
DBMS designed to efficiently handle points and shapes on
the map. PostGIS [33] is an open source extension that adds
support for geographical data to the PostgreSQL DBMS.
As achieving scalability of processing large-scale geograph-
ical dataset is a challenging problem, there have been ap-
proaches to enable GIS features on top of MapReduce frame-
works [8, 17]. On the other hand, there is an approach to
incorporate geographical data support into Semantic Web
standards. GeoSPARQL [12] aims to bridge the gap be-
tween GIS and SBD systems by incorporating geographical
concepts and support into the SPARQL query language’s
feature.

3. THE VISION OF IVAS
Infrastructure Vulnerability Analysis System (IVAS) refers

a system which supports subject matter experts’ decision
making based on the data analysis on multiple heteroge-
neous critical infrastructure datasets. We present a generic
architecture of an IVAS. As shown in Figure 1, an IVAS is
composed of three layers: Data Layer, Analysis Layer, and
User-Interface. In this section, we explain the role of each
layer, discuss challenges, and how we can leverage various
existing technologies.

Figure 1: Conceptual architecture of an Infrastruc-
ture Vulnerability Analysis System (IVAS).

3.1 The data layer– Constructing and manag-
ing a CI network-of-networks graph

The data layer is the lowest layer of the architecture.
There exists a wide range of public and non-public CI datasets
compiled by various organizations such as federal agencies
or commercial vendors. For instance, the United State’s
National Geospatial-Intelligence Agency (NGA) and the De-
partment of Homeland Security (DHS) published a unified
infrastructure geospatial data inventory, namely HSIP Gold [1],

which includes domestic infrastructure datasets collected from
various government agencies and partners. A license free
subset of HSIP Gold called HSIP Freedom is available as
well. NHDPlus [4] is a dataset created by the US Environ-
mental Protection Agency (EPA), which includes informa-
tion about the nation’s hydrologic framework. USGS Cur-
rent Water Data for the Nation [7] provides real-time stream
flow data across the nation. Other examples include open-
source Energy datasets from U.S. Energy Information Ad-
ministration (EIA) [6].

The CI Network-of-Networks Management component is
responsible for constructing and managing a CI network-
of-networks graph from various GIS datasets. The graph
is composed of CI entities and their relationships extracted
from multiple data sources, where the relationships include
both intra relationships within a dataset and inter relation-
ships between entities across multiple datasets. For the
graph construction process, higher-level abstracted models
are desired. In other words, the nodes (URIs), edges (pred-
icates), and properties (subset of predicates and literals de-
scribing detailed information about nodes and edges) in the
CI network-of-networks graph need to be clarified. There
can be many ways of constructing the graph and we illus-
trate a process in Figure 2 that includes the following steps.

Figure 2: Process of constructing a CI network-of-
networks graph.

Geometry node construction: The GIS datasets gener-
ally include geographical shapes of entities (e.g., POINT,
LINESTRING, POLYGON, etc.). As the first step, the
graph constructor component extracts shapes information
from data sources and construct geometry (shapes). We
notice that majority of GIS datasets are published in the
shapefile format [20]. However, in a generic system, under-
standing various formats such as plain text and Comma Sep-
arated Values (CSV) should also be considered. The follow-
ing example shows how geometrical shapes can be modeled
as a set of triples in the pseudo N-triple format, where P a
and P b can be considered as nodes and the triples describe
the properties of the nodes.

P_a "hasType" "Point".
P_a "hasLatitude" "XX". P_a "hasLongitude" "YY".
...
G_a "hasType" "Poligon ".
G_a "isComposedOf" P_a. G_a "isComposedOf" P_b.
G_a "isComposedOf" P_c. G_a "isComposedOf" P_d.
// G_a is a square -shaped geometry ,
// composed of four points

CI intra-network graph construction: The graph con-
structor component constructs CI intra-network graphs by
interpreting given GIS datasets. A CI intra-network graph



refers to a graph that can be directly extracted from a
dataset describing a CI. GIS datasets with information of
CI entities and their explicit relationships can be naturally
converted into a CI intra-network graph by making each en-
tity and relationship to a node and an edge respectively.
The following example shows an CI intra-network graph in
RDF triples constructed from a power transmission network
dataset. Note that every node representing an entity has a
connection to a geometry node by “hasShapeOf” predicates
to represent its shape.

//CI intra -network graph
S_a "hasType" "Entity ". S_a "isA" "Substation ".
S_a "hasShapeOf" P_a
...
S_b "hasType" "Entity ". S_b "isA" "Substation ".
S_b "hasShapeOf" P_b
...
S_a "hasTransmissionLine" S_b.

A CI intra-network graph can be also constructed from
multiple LineString shapes in a data set. For example, we
can create a road network from multiple LineString shapes
representing the shapes of streets. In this case, nodes rep-
resenting intersections may need to be created. The fol-
lowing example shows how a CI intra-network graph can
be created from two LineString geometries. The directions
of edges should be carefully considered, and this is partic-
ularly important for some infrastructure networks such as
water streams where the direction (e.g., water flow) could
affect the analysis.

// multiple linestrings
L_a "hasType" "LineString ".
L_a "isComposedOf:L_a:1" P_a.
L_a "isComposedOf:L_a:2" P_b.
L_a "isComposedOf:L_a:3" P_c.
L_b "hasType" "LineString ".
L_b "isComposedOf:L_b:1" P_d.
L_b "isComposedOf:L_b:2" P_b.
L_b "isComposedOf:L_b:3" P_e.
//CI intra -network graph
P_a "connectedBy:L_a" P_b. P_b "connectedBy:L_a" P_c.
P_d "connectedBy:L_b" P_b. P_b "connectedBy:L_b" P_e.

CI network-of-networks graph construction: At first,
there will be no explicit interlinks between nodes created
from disparate datasets. However, there can be various
types of interdependencies (e.g., cyber, physical, logical, etc.)
between the entities in different infrastructures. This layer is
about interlinking nodes created from different CI datasets.
The graph constructor component exploits the rule-based in-
ference engine to infer relationships of entities in different
infrastructures and then creates edges between the nodes in
CI intra-network graphs. The rule-based inference engine
should allow users (e.g., CI operators) to expressively define
various rules. For instance, operators can choose to connect
a substation node with all water pumping station nodes that
are within the substation’s service area polygon to represent
physical dependency of power.

We emphasize that constructing and managing CI network-
of-networks graph in a scalable and efficient manner is very
important as much as the other layers, because it provides
the fundamental for operations of IVAS. SBD tools can-
not resolve all the challenges in this layer, but many ex-
isting systems and tools can be exploited to complement
the SBD tools. Big Data data processing frameworks such
as MapReduce[18] and Spark[42] can be exploited to deal
with large-scale data conversion via parallel processing on
a clustered system. Our prior work [29] is a good example

where MapReduce can be utilized for constructing large-
scale graph from non-graph datasets. A geographical database
(e.g., PostGIS[33]) and a triplestore (e.g., uRiKA-GD) can
be combinationally utilized to store and analyze CI network-
of-networks graphs. For instance, we can store a geometry in
a geographical database and assign an identifier to the stored
geometry entity. Separately, we can store a node (URI) hav-
ing a reference to the identifier in the triplestore. Performing
geographical operations without proper indexing techniques
can be very expensive. For instance, if the rule-based infer-
ence engine wants to create new edges between two POINT
geometry nodes if they are the nearest. Without proper
indexing techniques, processing such simple rule already re-
quires N×N times of measuring distance, where N denotes
the number of POINT geometry nodes. Geographical oper-
ations such as finding nearest points, determining overlaps,
measuring distance can be efficiently performed utilizing the
geographical database by taking advantages of indices (e.g.,
R-Tree-over-GiST[32], etc.) supported by the database. On
the other hand, graph operations such as graph traversals
can be also efficiently processed using triple store. Further-
more, utilizing a triplestore that supports GeoSPARQL[12],
such as Parliament[13], can be also considered for utilization.

3.2 The analysis layer– Performing analytic op-
erations at scale

There is not a“one-size-fits-all”graph for all kinds of anal-
ysis. Only the nodes and edges that CI operators are inter-
ested in should be considered for an analysis. The analytic
layer is responsible for creating and managing various ana-
lytic graph views from the constructed graph. Users should
be able to define their constraints of sub-selecting entities
from the constructed RDF graph (e.g., select only highways
from a road network dataset). The problem of creating
graph analytic views are highly related to subgraph pat-
tern matching query against the constructed graph. Luckily,
there are many SBD tools that are developed to efficiently
perform this operation. But, it should be considered that
there needs to be a mechanism that can incorporate geo-
graphical information into the SPARQL query at the same
time. Thus, an abstract data interface that covers both of
geographical database and triplestores need to be provided
for this purpose. Materialization of selected graph views for
efficient processing should be considered.

Once a graph view is selected, the components in this layer
are responsible for performing various analysis operations on
the graph1. In general, analytic operations can be grouped
into two categories.

The topology-based analysis aims to discover useful vul-
nerability analysis results based on the understanding of the
structure of a graph. Understanding how robust a CI graph
as a whole is can be useful, since it gives a big picture to a
CI operator. However, defining a good quantitative measure
that captures the vulnerability of the system modelled as a
graph is still an open research problem. We suggest a combi-
national usage of existing graph-theoretic measures such as
node degree, shortest paths, connected component[36], node
eccentricity[23] as starting points. For instance, by assum-
ing that a higher number of shorter re-routing paths between
nodes indicates a more robust network, the robustness can

1We will use the term ‘graph’ to refer to an analytic graph
view the convenience of explanation,



be measured by the size of the largest connected component
and by the average distance between nodes [28].

In addition, CI operators are often interested in quan-
tifying the vulnerability of graph components (e.g., nodes,
edges, subgraphs, etc.), since it can provide more specific in-
formation to CI operators. There have been a few researches
that incorporate simple graph-theoretic measures such as
node degree or betweeness [21] for vulnerability analysis [28,
19], but not much efforts have been made to leverage more
sophisticated measures such as PageRank [40].

For computation of these graph measures, existing tools
such as gm-sparql [30], which enables performing various
graph operations such as node degree, connected compo-
nent [36], node eccentricity [23] within a triplestore, can be
utilized. However, as majority of existing graph measures
are defined on a homogeneous graph, which is composed
of one type of nodes and edges and CI network-of-networks
graphs are heterogeneous, existing graph-theoretic measures
should be carefully utilized or modified with incorporating
sufficient domain knowledge of CI.

The simulation-based analysis aims to understand how ef-
fects of perturbation events in an infrastructure (e.g., dam-
age in the road network) can spread out across multiple
infrastructure networks via simulation. One potential ap-
proach for the simulation-based approach is to leverage prop-
agation models such as random-walks [40] and label propa-
gation [43] to incorporate domain knowledge into the graph
network. For instance, assuming the Markov property and
each node in the network are affected by its adjacent nodes,
cascading effects over a graph can be simulated by using a
function that decides each node’s status based on its adja-
cent nodes. It is important to also consider temporal fea-
tures, such as predicting how failures of nodes can cause
cascading effects throughout the network after an hour, a
day, or a week. Another approach of performing simulation-
based analysis is to use the vulnerability measures as dis-
cussed previously. Specifically, we can use the changes in
the vulnerability score of the entire graph or certain inter-
ested graph components before and after removal of a given
set of nodes in the graph. Simulation of various what-if sce-
narios such as random perturbations (inactivating random
nodes or edges), targeted perturbations (inactivating nodes
with higher number of edges), regional perturbations (inac-
tivating a set of nodes or edges located in a region) can be
useful for CI operators. Ultimately, simulation-based analy-
sis should be able to predict consequences of a perturbation
event before the effects cascades, which means that not only
the scalability but also the processing time responding to
changing inputs needs to be deeply investigated.

3.3 The user interface layer – Interactive vi-
sualization of analytic output to generate
key insights

The user interface layer layer aims to provide an easy-to-
use and intuitive interface of IVAS to users. IVAS should
have similar capabilities provided by other GIS tools, such
as visualization of analytic outputs of CIs as layered maps.
It can give intuitive insights to the decision makers and op-
erators by clarifying the relationships among several factors
and displaying how seriously a perturbation event can affect
a local area or the network as a whole [38]. Without having
to develop the whole visualization interface, leveraging stan-
dards and widely exploited softwares like ESRI’s ArcGIS[27],

Maptitude[3] and Google Maps can be a good start. For in-
teractive analysis, providing intuitive interface for defining
of perturbation inputs (nodes/edge removal) and the type of
interdependencies that will be considered for the graph anal-
ysis need to be researched. Presenting discovered knowledge
or suggestions based on analysis as a combinational display
of information visualization widgets such as line, bar charts,
tree maps[16] are desired by CI operators. Considering the
extensibility of system, developing APIs that can be directly
used in another software development should be also consid-
ered.

IVAS should allow users to easily ingest additional CIs
data sets into the constructed heterogeneous infrastructure
network,specify the type of interlinking, the type of analysis
required such as topological vs dynamic cascade analysis It
should also allow the user to navigate and prioritize data
entities and discovered knowledge.

4. CONCLUSION
In this study, we introduced an important application do-

main – critical infrastructure vulnerability analysis – for Se-
mantic Big Data community. Critical infrastructures (CIs)
which are significant to sustaining day-to-day commodity
flows form a very complex heterogeneous network-of-networks.
Modeling and performing simulation on these networks for
vulnerability and cascading failure analysis are nicely aligned
with the capabilities of emerging SBD technologies. How-
ever, to complement limitations of the SBD tools, synergis-
tic exploitation of other various Big Data and GIS tools and
standards should be carefully considered. We also discussed
various types of challenges we might potentially encounter
while constructing and managing a CI network-of-networks
graph, performing analytic operations at scale, and visual-
izing of analytic output to generate meaningful insights.
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