
A Self-Adaptive Middleware for Efficient Routing
in Distributed Sensor Networks

Jingtao Sun
Architecture Science Research Division

National Institute of Informatics, NII
Tokyo, Japan
sun@nii.ac.jp

Sisi Duan
Department of Computer Science

University of California, Davis
CA, USA

sduan@ucdavis.edu

Abstract—Routing in sensor networks with unpredictable net-
work connections and node failures is challenging due to the
lack of knowledge about network dynamics in decision making.
We present a self-adaptive middleware for efficient routing in dis-
tributed sensor network. At the heart of the proposed approach is
the design of a policy-driven language to control the relocation of
software components between sensor nodes. Accordingly, various
changes in sensor networks can be dynamically adapted. Based
on such a middleware, we provide a few approaches in building
a practical routing protocol. For instance, nodes can adaptively
switch their routing strategies according to the network stability
or migrate some tasks to other idle nodes to prevent from node
failures.

Index Terms—Routing, Component-based, Relocation, Self-
adaptation, Policy-driven language, Distributed sensor networks

I. INTRODUCTION

Distributed sensor networks are widely used in a variety of
industry applications, such as monitoring and control systems.
However, the sensor nodes are usually constrained by limited
storage and power, frequent failures, and mobility of nodes,
resulting in unpredictable network connections, which makes
routing less efficient. Existing routing approaches mainly fall
into two categories: redundancy-based and knowledge-based.
Redundancy-base routing [2], [15], [16], [18], [19] relies
on the number of copies. Too little redundancy results in
low delivery rate and too much redundancy results in high
overhead. On the other hand, knowledge-based routing [5]–
[7], [12], [17] requires nodes to obtain knowledge in order to
make efficient routing decisions. However, knowledge about
some network parameters does not necessarily improve the
performance significantly.

Routing in sensor networks is challenging due to the lack of
knowledge about network dynamics in decision making. When
some sensors have high workload in collecting data, routing
may create extra overheads, rendering the nodes unavailable.
In addition, it is difficult to balance between redundancy
and knowledge in a practical routing algorithm. Indeed, too
many replicated messages may make nodes unavailable. It is
also difficult to obtain useful network parameters due to the
unpredictability of network dynamics.

Previous work [3], [4] proposed approaches to adapt to
changes in distributed systems in architecture-level. For in-
stance, Sun et al. [4] proposed a policy format to relocate soft-
ware components between computers in component runtime
system. In our work, we present a self-adaptive middleware
to relocate software components between sensor nodes to
adapt to various changes for efficient and practical routing.
We also design and implement a specialized policy-driven
language and a set of policies for adaptations. By using this
language, the destination and conditions can be easily defined
for relocation of software components. Also, the policies do
not need to define the destination of components. Instead, our
self-adaptive middleware will automatically decide for users.
In addition, the user-defined policies can also be reused when
the same condition happens. Based on our middleware, we
provide several approaches in building an adaptive routing
protocol. For instance, nodes can switch between different
routing algorithms depending on the network connections.
Furthermore, if too much storage or processing resource is
consumed, a node can also relocate software components
to other idle nodes so as to prevent from node and link
failures. As a result, nodes can adaptively enjoy the benefits
of both redundancy-based and knowledge-based protocols by
not suffering from the drawbacks.

Our contribution can be summarized as follows:

• We present a self-adaptive middleware to adapt to various
changes in distributed sensor network. We also design and
implement a policy-driven language for adaptations.

• Based on the language, we define a set of policies
and propose several approaches to build a self-adaptive
routing protocol. For instance, when the network becomes
unstable, nodes can switch to a more efficient routing
algorithm to guarantee high delivery rate and low latency.

• With our developer-friendly middleware, developers can
easily manage the policies for general purposes.

II. APPROACH

In this section, we discuss several scenarios in distributed
sensor networks, based on which we introduce the system

978-1-4799-8697-2/15/$31.00 c©2015 IEEE

requirements and our proposed approach for building a self-
adaptive middleware.

A. Scenarios

We consider two scenarios in distributed sensor networks.
Efficient routing strategy guarantees that an effective and effi-
cient routing strategy is used and data sharing and distribution
effectively allocates node resources.
Efficient routing strategy. We consider two types of routing
strategies: proactive routing, where routing information can
be pre-computed and stored locally at nodes independent of
traffic arrivals, and reactive routing, where routing information
is computed in a on-demand manner when packets arrive. The
former method is more efficient during routing. However, it
requires the topology to be relatively stable and consumes
computing resources even when no packets arrive. The latter
method does not require any computing resources unless
packets arrive. However, it might result in a longer latency. Our
goal is to adaptively choose an appropriate strategy depending
on the network stability and resource usage of nodes.
Data sharing and distribution. Apart from routing, sensor
nodes are also constantly monitoring and collecting informa-
tion depending on the applications. Therefore, it is desired
to guarantee that software components will not consume too
much computing power. Due to the fact that nodes in the
same (physical) area are easily approachable, we can relocate
the software components of a busy node to other idle nodes.
Also, when a few nodes are collecting overlapping data, they
can notify each other about the results, preventing busy nodes
from consuming too much resources.

B. Requirement

To solve the above problems, we proposed a self-adaptive
middleware system that meets the following requirements.
Self-adaptation. Existing distributed sensor networks usually
employ a pre-determined network structure, e.g., client/server
model, peer-to-peer model, and master-slave model, etc.
However, the requirements of sensors/applications may often
change and our distributed network constitution is desired to
be self-adaptive to various changes.
Separation of concerns. Sensor network applications and
adaptation modules should be defined independently. Our
adaptation mechanism should be abstracted away from the
underlying systems so that both the functions of software
components and user-defined policies can be reused.
Dependability. Centralized management often becomes the
bottleneck. Our middleware should to be built in a fully
distributed environment and also guarantee data consistency.
General-purpose. Various applications are running on top of
the sensors. The proposed approach should be implemented
to support general-purpose applications. It should also be
independent with other application-specific tasks.

Besides the above requirements, sensor nodes usually have
limited processing and storage resources. Therefore, our sys-
tem is desired to consume minimum resources for adaptability

while most existing adaptation approaches explicitly or implic-
itly assume that their targets have enriched resources.

C. Approach

At the core of our approach are two key ideas. First, we
develop a set of policies to relocate software components as
a basic adaptation mechanism. Second, we design a language
for specifying adaptation-policies. Based on such a design,
our system can reuse both the software components and the
policies in sensor networks.
Deployment software components on sensors. In general,
an application consists of one or more software components.
Our middleware system is dynamically adaptive to the changes
through relocation of software components between sensor
nodes, according to the deployment policies. When the soft-
ware components are migrated to destination, the local and
remote nodes can communicate with each other using our
dynamic methods invocation mechanism. In addition, both
the class file and the state of software components can be
migrated so that our middleware can rapidly restart to handle
interruptions.
Policy-driven language. To reduce the cost of programming
software components and to provide precise definition of the
software components, we design a policy-driven language for
adaptations. Each software component can have one or more
policies, where each policy is defined as a conditions and
actions pair. The condition is written in a first-order predi-
cate logic-like notation, where predicates reflect information
about the system and application. An action represents the
deployment and duplication of components for adaptation
purposes, instead of application-specific behaviors such as
communications and state transitions. In addition, our policy-
driven language supports execution of multiple policies and
conflict resolution mechanism.

III. POLICY-DRIVEN LANGUAGE

Our policy-driven language consists of four constructs, as
shown in Fig. 1. Based on such a flexible language, different
types of policies can be specified easily.

Condition Action
Policy

(creator, meta

data, setRule)

Validation

Overrides Modality

Policy

Overrides

Rule

Overrides

Not

And

Or
Meta-Policy

Policy Rules
(Conditions,

Action,Validation)

Root of

Policy-driven

language

Domain (Name,

Target, Precon,

Effects)

Adapt (Meta_Policy,

Target, Destination,

Effects)

Migration

Exclusion

Spreading

TimeOut

IF WHILE

Positive

Modality

Negative

Modality

Spell Grammar

Fig. 1: Policy-driven Language.

A. Design of Policy-driven language

We use several notations to better describe our language, as
shown in TABLE I. Our middleware enables users to specify

user-defined policies for adaptations by means of the expres-
sions. Each expression contains meta-policies, conditions for
adaptation, and destinations of relocation. The destinations of
relocation is activated only if the conditions are true.

TABLE I: Notations.

Notation Meaning

current Current node
L = {`1, `2, `3, · · · } Location names
X = {x1, x2, x3, · · · } Location variable names
S = {S1, S2, · · · } Meta data of policies
C = {C1, C2, · · · } The identifiers of components with conditions
N = {N1,N2, · · · } message names

Policy Expression. We define D = {D,D1, D2} as located
process expressions, which is the smallest set containing the
following expressions. In the expressions, C represents a set
of conditions belonging to E, E0 is often represented by E, σ
represents all the execution of policies that are blocked, and
τ is an action invoked as a callback function.

D, D1, D2 ::= `[S| E| P] (Located component)
| D1 ‖ D2 (Distributed component)

S, S1, S2 ::= S1 > S2 ‖ S1 < S2 (Meta policy)
| σ (Block execution)

E, E1, E2 ::= C then M in E (Conditional action)
| E1 + E2 (Alternative selection)
| 0 (Termination)

M ::= moveTo(x) (Migration)
| copyTo(x) (Duplication & migration)
| remove(x) (Elimination)
| τ (Internal execution)

P , P1, P2 ::= P1,P2 (Composition)
| A (Component)
| ε (No component)

The policy expressions can be used to construct different
policies. For instance, `1[C then moveTo(`2) |A] means that
if condition C is true, a component A located at `1 is relocated
to `2, where moveTo(`2) represents the migration to `2. Note
that P in `[C then E | P] intends to define application-specific
processing independent of the policy, which is beyond the
scope in the representation of the language.

In addition, `[C1 then copyTo(`3) + C2 then callback
in remove | A, B] means that if condition C1 is true, two
components A and B are copied and the copies are deployed
at `2. Otherwise, if condition C2 is true, the policy executes
a callback function in A and B and then terminates A and B.

Policy Meta-Data. Our policy language supports execution of
multiple policies, which may cause conflicts. Therefore, we
imported meta-policy specifications for conflict resolution. A
policy object includes rule-policy and meta-policy. Rule-policy
is used to define the main body of user-defined rules. Meta-
policy is used to specify which modality holds precedence
over other policies, as described in details in §III-B.

Policy Condition. We define the policy conditional functions
of our language as first-order logic predicates. The set of
conditions C is the smallest set containing the following ex-
pressions: C,C1, C2 := φ |¬C |C1∧C2 |C1∨C2 | true |false

, where φ is a logical predicate symbol and returns either
true or false with more than a zero parameter. Our policy-
driven language supports the operators AND, OR, NOT, IF,
and WHILE, based on which complex conditions can be built.

The current implementation provides several built-in func-
tions as follows, where each predicate can have zero or more
parameters and return true or false.

• exist(A,`) (exist : P × L → true or false) returns true
if the same or compatible component(s) of component A
exists at location `, otherwise it returns false.

• delay(time) (delay : T → true or false) blocks the
subsequent executions for the time interval and then
returns true, where T is an infinite set of relative time
values.

• received(N, `, A) (requested : P × N × L → true
or false) returns true if the component that the policy
is assigned to receives a message labelled as N from
component A.

User-defined functions are implemented inside components,
meta policies, or the runtime system. By using these condi-
tions, the policy actions can be triggered.

Policy Action. When the monitor of the system detects
application or network changes, our pre-defined policies are
immediately run to determine the destinations of software
components in order to dynamically adapt to the changes.
Since the language is designed for application developers,
they do not need to define the destination of components.
Instead, our middleware can automatically select destinations.
The users only need to define the information of relocated
components and the methods they intent to invoke.

We provide four major adaptation formats. 1) The migration
policy is the basic adaptation format, which can be used
to define the most basic adaptation policy as `[exist(A, an-
other) then moveTo(another) in E | A]. 2) The spreading
policy is an extension of migration policy, where software
components can be duplicated and the clones are relocated
to the destination sensors or specified applications. We define
it as current[¬exist(A, another) then coypTo(another) in E
|A]. 3) The exclusion policy is also an extension of migration
policy, which can be used when certain conditions are true.
Since software components may be relocated repeatedly, the
mutex functions is contained in node or application. In this
case, our language can use this policy to allow software
components to return back to its original node/application
or transfer it to a safe node/application. It is defined as
current[exist(A, another) then moveTo(another) in E|A]. 4)
The timeout policy uses a user-defined timer and the software
components can be dynamically changed using the timer. It is
mainly used for the maintenance of systems and is defined as
`[delay(t) then moveTo(another) in E |A].
Policy Validation. Our policy-driven language supports vari-
ous well-known spell-checkers to check the translation in PO
files. Currently there is only standalone support for Aspell.
Spell-checking of one PO file or a collection of PO files can
be performed directly by sieving them through one check-spell

(Aspell) or check-spell-ec sieves. The sieve will report each
unknown word, possibly with a list of suggestions, and the
location of the message (file and line/entry numbers). It can
also be requested to show the full message, with unknown
words in the translation highlighted. In addition, our language
also support grammar checks. In the current implementation
we use an open source grammar and style checker, called
LanguageTool. It supports a number of languages to greater
or smaller extent.

B. Policy Conflict resolution management

Due to the nature of sensor networks environment, we
expect that several policies are applicable to every domain,
which could lead to potential conflicts. For instance, when the
software components of node1 are required to be relocated to
node2 while the software components of node2 are required
to be migrated to node1, resulting in a conflict. In order to
resolve such conflicts, we assign each policy with a priority,
e.g, using negative and positive. For simplicity, we define
S= S1, S2, · · · to be a set of meta-policies, If S1 > S2, S1 will
be executed first. We use S[S1 > S2 then S1 ‖ S1 < S2 then
S2 ‖ σ | P] to denote such behavior, where P is the policy
object defined by users and σ represents that both of S1 and S2

are blocked. In other words, if the negative and positive meta-
policies encounter in same node, the permission of positive
meta-policy is higher than negative meta-policy. However, if
the policies have the same priorities in one node, both of them
have to be blocked until a new policy can distinguish them or
the administrator manually modify their priorities.

We use three kinds of meta rules:
• metaRule(Policy, positive/negative) Default precedence

that can be set for a policy.
• metaRuleAction(ConflictActions, positive/negative) It

can determine the order of execution for policies.
• metaRuleBlock(ConflictActions) Conflicting policies

can be temporarily stopped until priorities are modified
by other policy or system administrator.

By default, the meta rules associated with actions are given
the highest priority than default meta rule without actions.

IV. DESIGN AND IMPLEMENTATION

The proposed self-adaptive system can dynamically deploys
components to define application-specific functions at sensors
according to user-defined policies. In this section, we introduce
the design of our system.

A. System Architecture

Our self-adaptive system is built between the JVM (Java
Virtual Machine) and distributed applications which are run-
ning on top of each sensor. Our self-adaptive system consists
of three parts as shown in Fig. 2: Adaptive Protocol Core,
Components Runtime System, and Adaptation Manager.

The Adaptive Protocol Core of our middleware provides
basic parent class and several custom interfaces and tools for
our system. The Components Runtime System is responsible
for executing software components on sensors, migrating

software components between sensors, and enabling them
to invoke methods at the destination. The local sensor and
destination sensors can communicate after migration according
to naming inspection mechanism. The Adaptation Manager is
responsible for interpreting user-defined policies. When user-
defined conditions are different from the changes collected
by system&resource&network monitor, software components
will be relocated among runtime systems. When different
policies are controlled by the same component, conflicts may
occur. The conflict resolution management mechanism is used
to determine the order of executing policies to resolve the
conflicts. We also use a set of replicated destination databases
to store the policies, where nodes can fetch the policies in a
on-demand manner. It also supports automatic distribution of
policies when new policies are added.

Middleware

Runtime system

Sensor node

 JVM and operating system

Specification of

requirements

Distributed software

components

Adaptation manager

Policies Destination

Policy-language

interpreter

System&resource&net

work monitor

Component deployment

management

Mobility-transparent

method invocation

Middleware

Sensor node

 JVM and operating system

Specification of

requirements

Distributed software

components

PoliciesDestination

Network

Adaptive Protocol Core Adaptive Protocol Core

Component discovery

mechanism

Conflict resolution

management

Runtime system

Component deployment

management

Mobility-transparent

method invocation

Component discovery

mechanism

Adaptation manager

Policy-language

interpreter

System&resource&net

work monitor

Conflict resolution

management

Fig. 2: System Module.

When external changes was notified by system&resour-
ce&network monitor, the policy-driven interpreter will invoke
the user-defined policies according to the changes. The inter-
preter can then execute the policies and notify the runtime
system the results. When the runtime system receives the
results, the software components can be relocated to their
destinations according to the policies. In this way, routing
protocols can be dynamically changed from one to another.

B. Component runtime system

Every runtime system allows each component to have at
most one activity through the Java thread library. When the
life-cycle state of a component is changed, e,g creation,
duplication, migration, and termination, the runtime system
issues specific events to the software component. To capture
such events, each component have more than one listener
object. Each listener object implements an interface that hooks
the events issued before or after changes in its life-cycle
state. Through this method, we can easily hide the differences
between the interfaces of objects at different nodes. In ad-
dition, different runtime systems can exchange components
through TCP channels by using Object Input/Output Stream.

When a component is transferred over the network, both the
code and the state are transmitted into a bit stream using
Java’s object serialization package and then transferred to the
destination. The runtime system at destination side receives
and unmarshals the bit stream. When components are deployed
at destination, their methods can also be invoked from other
nodes.

C. Adaptation mechanism

By default, each runtime system has its own adaptation
manager. Each adaptation manager periodically advertises its
address through UDP multicasting and nodes return their ad-
dresses and capabilities through a TCP channel. The adaptation
manager also evaluates the network or application changes
such as user requirements and resource availability. Each
policy is specified based on the language defined in the policy
expression, as described in §III-A. The adaptation manager
offers an interpreter, which consists of three parts. The first
part is responsible for defining meta information of policies,
denoted by S, S1, S2, · · · to avoid conflicts. The second part
is responsible for evaluating the conditions of adaptations,
denoted by C,C1, C2, · · · , as first-order logic predicates with
predicates that reflect various system and network properties,
e.g., the utility rates and processing capabilities of processors,
network connections, and application-specific conditions. The
third part is responsible for triggering actions of software com-
ponents, denoted by P, P1, P2, · · · , based on the operational
semantics.

V. ROUTING

We provide a few approaches in building a practical and
efficient routing protocol using the four policies shown in
§III-A. We employ a two layer master-slave structure, as
shown in Fig. 3. Each master node manages the information
of a group of slave nodes. We assume slave nodes in the same
group are physically or logically close such that each node
can reach other nodes either directly or over multiple hops. In
addition, when the master node fails, another slave node can be
chosen to be the master node. Master nodes of different groups
can also exchange information so that software components
can be migrated across groups.
Change of routing strategy. Our design provides the flexibil-
ity to switch routing strategies at a node to address the problem
described in §II-A. Our protocol switches between proactive
routing and reactive routing depending on the network connec-
tivity. When the network is relatively stable, we use proactive
routing. Each node periodically pings its neighbors and reports
to the master node if certain nodes are not responding. Master
node of each group collects information from its slave nodes.
When the number of new nodes and faulty nodes within certain
period exceeds certain threshold, we consider the network
not stable. It then notifies the nodes to switch to reactive
routing. This approach provides accurate information for nodes
to smartly choose an appropriate routing strategy. However,
it requires the master node to maintain more information. An
alternative approach is to switch between proactive routing and

Management
Master Server

Sensor Node Group

Management

Slave Server

Spread

Sensor Node Group

Management

Slave Server

Spread

Sensor Node Group

Management

Slave Server

TimeOut

Domain
Naming System

Broadcast

Broadcast Broadcast

Response

Request

Update Update Update

Migration Migration

Adaptation
Manager

System

Manager

Define

Policy

Instruction

Fig. 3: Master-slave structure.

reactive routing periodically using timeout policy. Specifically,
node 1 sets a timer and migrates its software component of
routes computation to node 2. Before the software compo-
nent is migrated back, node 1 uses reactive routing. In this
approach, master node does not maintain information about
network stability yet it may result in a less efficient routing
strategy.

Routes computation sharing. In the above example, although
nodes switch to reactive routing and routes do not have to
be computed, we can still compute the routes so that the
information can be directly used when the network becomes
stable. Also, a node has limited resources and may not be able
to compute the routes while processing other requests. In both
scenarios, the node can migrate the tasks to other idle nodes.
We model the route computation as a software component.
The node can use either migration policy or spreading policy.
To use the migration policy, the software component of routes
computation at node 1 is simply migrated to node 2 and routes
of node 1 are computed at node 2. In this case, node 1 simply
contacts node 2 to obtain all the paths and uses during routing.
On the other hand, to use the spreading policy, the software
component is first cloned and then migrated to node 2. In this
case, if node 1 cannot compute all the routes, it can contact
node 2 to obtain the paths.

Data sharing. As discussed in §II-A, sensors constantly
collect information and send to different nodes depending on
the applications. When routing consumes too much resources,
data collection component may become unavailable, or vice
versa. We use spreading policy to handle such failure. For
instance, we set a threshold for the storage usage. When the
storage usage at node 1 exceeds the threshold, the spreading
policy is run, i.e., node 1 copies the software component of
data collection and migrates it to node 2. Note that node 2 must
be in the same physical area and the storage usage is smaller
than the threshold, i.e., it can also collect the same data as
node 1. When node 2 collects the corresponding information,
it simply shares the data with node 1. In this case, even when
node 1 fails to collect certain data, it can still obtains from
node 2.

Distributed software migration. In the above approaches,
node 1 can contact the master node to obtain an available node
for software components migration. It can also randomly picks
a node 2 from its direct neighbors. In the latter case, node 2
may already have the same or conflicting software component.
In this case, node 2 uses the exclusion policy until the software
component reaches an available node 3. When the software
component is deployed at node 3, node 3 sends a message to
node 1 to notify the result.

VI. RELATED WORK

Routing in distributed sensor network has been widely
studied. Existing work fall into two main categories of routing
strategies. The first type is replication-based, where a message
is replicated and sent throughout different paths to increase the
probability of the message getting delivered, e.g, flooding [2],
[15], [16] and epidemic routing [18]. However, replication can
be very expensive. The second type is knowledge-based, where
different approaches are taken to optimize routing depending
on different metrics [5]–[7], [12], [17]. The drawback is that
there is no guarantee that physically close nodes are easy to
communicate with low latency and it does not work well in
mobile networks. In comparison, adaptive routing has been
proposed [10], [14]. In Island Hopping [14], nodes are grouped
into clusters where nodes can only communicate with nodes
in the same cluster. It routes data through the mobility of
nodes, i.e., using data carrier. Context-aware routing [10]
manages different network attributes and nodes adaptively use
a combination of different metrics to predict the node with the
highest probability of delivery.

Several work built approaches to adapt to the changes in
distributed systems and mobile applications through relocation
of software components between different computers/servers.
Sun et al. [4] proposed a policy format to define requirements
of users on a self-adaptive middleware that relocates software
components between computers in architecture-level. Different
from previous work, we propose a specialized policy-driven
language for adaptations in distributed sensor networks. We
specialize the destination of relocated components using our
language. Ioannis et al. [3] present a connection-based ar-
chitecture for self-organizing software in distributed systems.
Like other architecture-level adaptations, they intended to
customize their systems by changing the connections between
components instead of the internal behaviors inside them.
Weyns et al. [1] proposed a mobile storytelling application
that employs a social recommender using ActivFORMS. They
added a self-adaptive layer on top of the application to adapt
to changes. They also underpin the need for an integrated
verification approach for self-adaptive systems that combines
offline and online verification. Different from our work, they
do not raise the adaptation conditions to the level of language
so that they can not be widely applied. Similar with our work,
several previous research [8], [9], [13] also proposed language-
based adaptation for self-adaptive systems. However, they do
not define the destinations of software components during
relocation. Therefore, it is difficult for system administrators

to monitor the migration trajectory. When the system fails, it
is difficult to fix the failures in a timely manner.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present the design of a self-adaptive
middleware in distributed sensor networks. Based on such
a middleware, we provide several approaches in building
a practical and efficient routing protocol, e.g., nodes can
smartly adjust their routing strategies according to the network
connectivity and also migrate or spread their tasks (modeled
as software components) to other nodes to prevent from node
failures and message loss. Our developer-friendly middleware
also makes it easy to add and manage policies for general
purposes in sensor networks. In the future, we will further de-
velop, implement, and evaluate the routing protocol using our
self-adaptive middleware. We also look forward to handling
more scenarios in sensor network routing to build a fully-
fledged protocol.

REFERENCES

[1] D. Weyns, S. Shevtsov, S. Pllana: Providing Assurances for Self-
Adaptation in a Mobile Digital Storytelling Application Using Activ-
FORMS, SASO, pp. 110–119 (2014).

[2] M. Grossglauser, and D. N. C. Tse: Mobility increases the capacity of ad
hoc wireless networks, IEEE Trans. Netw. 10(4), pp. 477–486 (2002).

[3] I. Georgiadis, J. Magee, and J. Kramer: Self-Organising Software
Architectures for Distributed Systems, WOSS, pp. 33–38 (2002).

[4] J. Sun and I. Satoh: Dynamic Deployment of Software Components for
Self-Adaptive Distributed Systems, IDCS, pp. 149–203 (2015).

[5] E. P. C Jones, L. Li, J.K. Schmidtke, and P. A. S. Ward: Practical routing
in delay-tolerant networks, IEEE Trans. Mob. Comput. 6(8), pp. 943–
959 (2007).

[6] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. Peh, and D. Rubenstein:
Energy-efficient computing for wildlife tracking: design tradeoffs and
early experiences with zebranet, ASPLOS-X, pp. 96–107(2002).

[7] B. Karp and H. T. Kung: GPSR: greedy perimeter stateless routing for
wireless networks, MobiCom, pp. 243–254 (2000).

[8] L. Kagal, T. Finin, and A. Joshi: A Policy Language for a Pervasive
Computing Environment, POLICY, pp. 63–74 (2003).

[9] M. Luckey and G. Engels: High-quality specification of self-adaptive
software systems, SEAMS, pp. 143–152 (2013).

[10] M. Musolesi and C. Mascolo: CAR: Context-aware adaptive routing
for delay-tolerant mobile networks, IEEE Trans. Mob. Comput. 8(2),
pp. 246–260 (2009).

[11] A. Nayebi, H. Sarbazi-Azad, and G. Karlsson: Routing, data gathering,
and neighbor discovery in delay-tolerant wireless sensor networks,
IPDPS, pp. 1–6 (2009).

[12] T. S. E. Ng and H. Zhang: Predicting internet network distance with
coordinates-based approaches, INFOCOM, pp. 170–179 (2002).

[13] D. Nicodemos, D. Naranker, L. Emil, S. Morris: The ponder policy
specification language, POLICY, pp. 18–39 (1995).

[14] N. Sarafijanovic-Djukic, M. Piórkowski, M. Grossglauser: Island Hop-
ping: Efficient mobility-assisted forwarding in partitioned networks,
Technical Report, Duke University (2000).

[15] R. C. Shah, S. Roy, S. Jain, and W. Brunette: Data mules: modeling
a three-tier architecture for sparse sensor networks, Ad Hoc Networks
1(2–3), pp. 215–233 (2003).

[16] T. Small and Z. J. Haas: Resource and performance tradeoffs in delay-
tolerant wireless networks, WDTN, pp. 260–267 (2005).

[17] T. Spyropoulos, K. Psounis, and C. S. Raghavendra: Single-copy routing
in intermittently connected mobile networks, SECON, pp. 235–244
(2004).

[18] A. Vahdat and D. Becker: Epidemic routing for partially connected ad
hoc networks, SECON, pp. 226–235 (2006).

[19] Y. Wang, S. Jain, M. Martonosi, and K. Fall: Erasure-Coding Based
Routing for Opportunistic Networks, WDTN, pp. 229–236 (2005).

