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Abstract

We present a novel study of reliable broadcast in interdependent networks, in

which the failures in one network may cascade to another network. In particular,

we focus on the interdependency between a communication network and a power

grid network, where the power grid depends on the communication network

for control and the communication network depends on the grid for power.

In this paper, we propose a best effort broadcast algorithm to handle crash

failures in the communication network that may cause cascading failures. We

guarantee that all the correct nodes, which operate correctly according to the

protocol and do not experience any software or hardware or network failures,

eventually deliver the message if the sender is correct. We provide a centralized

algorithm and a fully distributed algorithm for nodes to analyze and handle

cascading failures. At the core of our work is the fully distributed algorithm

which enjoys great performance and scalability. Our evaluation results show

that the algorithm handles cascading failures with low overhead.
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1. Introduction

Modern network services are becoming increasingly dependent on infrastruc-

ture networks such that a single failure may cascade to another network and

cause the failures of all the dependent networks. Such failures may cascade

multiple times in a zigzag manner between the networks and cause widespread

failures. A particular example is the interdependency between the power grid

and the communication network. The 2003 Italian blackout [1], 2003 U.S. North-

eastern power outage [2, 3], 2011 Southwest blackout [4], and 2012 Hurricane

Sandy [5, 6] are all examples of such interdependency. For instance, during the

2003 U.S. Northeastern power outage, 3,175 communication networks suffered

from abnormal connectivity outage [3].

With the development of the Internet of Things (IoT) technologies, commu-

nication network plays an increasingly important role in today’s infrastructure

networks. Indeed, although it has been shown to greatly increase the resilience

of existing infrastructures, failures or cyber attacks may cause severe impact

to all the infrastructures. However, despite the significance of resilience in in-

terdependent cyber infrastructures, to the best of our knowledge, none of the

previous work has formalized the problem of cyber interdependencies and stud-

ied resilient solutions to handle such failures.

We study reliable broadcast in a multihop communication network c-network

and a power grid network p-network, which are mutually dependent. The c-

network is composed of a set of c-nodes (e.g., routers, sensors, etc.) connected

by communication links and the p-network is composed of a set of p-nodes (e.g.,

power substations) connected by power lines. In order for the nodes to operate,

a c-node must receive power from at least one p-node and a p-node must receive

control signals from at least one c-node. We model the interdependency using

graphs. As illustrated in Figure 1, when c2 fails, it cannot provide control signals

to p1 and p3. Node p1 can still operate since c1 has an edge to it. However,

p3 fails and it cannot provide power to c3 and c4. Node c3 still operates with

power from p2. Since c4 does not have any incoming edges, c4 fails. In the
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Figure 1: Cascade of a single failure in the interdependent model between a c-network of 5

c-nodes and a p-network of 3 p-nodes.

communication network, a c-node sends a message through certain paths to

some c-nodes. C-nodes are subject to crash failures, which can be reliably

detected by other c-nodes. In comparison, correct nodes faithfully follow the

protocols, where correct node is a commonly used term in distributed systems

and networks [7, 8, 9, 10, 11]. Our goal is to design a solution that guarantees

best effort broadcast despite the presence of crashing c-nodes, where all the

correct nodes deliver the messages if the sender is correct. In addition, our

work can be easily extended to handle the failures of p-nodes which are not

caused directly by any c-node failures.

We illustrate the idea of using soft links to handle cascading failures, which

are backup links that are activated to handle the failures of primary communi-

cation links. The idea of soft links is not new. Specifically, in an independent

c-network, in order to handle the failure of a neighbor, a node ci only needs

to build a soft link to the neighbor of its neighbor prior to the failure so that

messages can still be sent along the path when the failure occurs. However, in

interdependent networks, since failures occur in a widespread cascading fash-

ion, it is possible that the neighbor of c′is neighbor also fails. A straightforward

solution is to build multiple soft links to different nodes in each path to handle

such a problem. However, it is extremely challenging to determine how many

soft links are necessary to handle even one single failure without knowing all the

cascading effect. Indeed, nodes need to analyze the cascading failures to handle
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them. One way is to rely on a powerful and centralized computing agent/node

to analyze the failures for each node. However, it may incur large communi-

cation and computing overhead since each node must communicate with the

centralized agent to learn the results. Although it might be possible to build a

set of distributed agents, it can still cause high communication and maintenance

overhead.

We present a best effort broadcast algorithm where nodes analyze cascading

failures and maintain the information in a fully distributed manner. At the

core of our approach are two key sub-algorithms: f-information collection and

link management. The f-information collection is a communication algorithm

for the c-nodes to pre-analyze and collect the information of all the cascading

failures that can be caused by a single c-node. Based on the f-information of

each neighbor, a c-node can learn the next correct c-node in each path so as

to maintain soft links prior to the actual failures. On the other hand, the link

management is a mechanism for the nodes to update their routing tables in

the presence of failures so that nodes can manage their soft links for long term

robustness. As a result, soft links can be correctly maintained and best effort

broadcast can be guaranteed if there are no failures during message transmission

in the algorithm.

Due to the use of the above approach, best effort broadcast is achieved with

the following benefits. First, nodes only need to maintain minimum informa-

tion in order to analyze the failures. Indeed, since we use a distributed failure

analysis algorithm, nodes do not need to maintain the information of the whole

network. Second, the information of cascading failures is collected in a fully

distributed manner. Last but not least, our algorithm provides decision makers

a reference of highly effective usage of soft links to handle failures prior to their

occurrence. In order to handle one c-node failure, each c-node maintains only

one soft link although a set of consecutive c-nodes may fail as a cascading ef-

fect. This guarantees that messages can be reliably broadcast to every correct

c-node in the communication network. In order to fully assess the distributed

algorithm, we also propose a centralized algorithm where nodes all rely on a cen-

4



tralized computing agent to analyze cascading failures. Our evaluation results

show that our distributed algorithm achieves low packet drop rate and generates

little overhead to the normal network traffic. The trade-off is a slightly longer

delay in handling failures.

Our paper makes the following contributions:

We present the first reliable broadcast model in the interdependent networks.

We study best effort broadcast in the presence of crash failures in the com-

munication network, which may cause cascading failures in both power grid

network and communication network.

We present a fully distributed algorithm for the nodes to analyze the cascading

failures. Each node maintains minimum information of the interdependent

networks.

We illustrate the usage of soft links in addition to the primary links in the

communication network to achieve best effort broadcast. In order to han-

dle one failure, each c-node only maintains one soft link although multiple

cascading failures may occur due to a single failure.

Our evaluation results show that our algorithm achieves low packet drop rate

and generates little overhead to the normal network traffic. The trade-off is a

slightly longer delay in handling failures.

2. Related Work

Modeling interdependencies between critical infrastructure networks is chal-

lenging due to a wide range of dimensions such as the types of coupling and the

types of failures [12, 13]. Previous studies of interdependent network systems fo-

cus mainly on the analysis of vulnerabilities or robustness of the CIs [14, 15, 16,

17, 18]. A few mathematical frameworks [19, 20, 21] and interdependency mod-

els [22, 23, 24] have been proposed to support vulnerability analysis. The idea is

to mainly predict the catastrophic consequences under extreme events given that

live monitoring of the infrastructures could be provided [25, 26, 27, 28, 29, 30].

A number of works study the interdependency between communication network
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and power grid, most of which focus on finding the vulnerabilities of existing

network [22] or the design of a robust topology [23]. In comparison, we study

a resilient solution that handles the failures in communication network in the

interdependency model. A shorter version of our paper has appeared previously

at ICDCN 2017 [31].

Reliable broadcast [7], such as reliable broadcast and uniform broadcast,

has been widely studied in independent networks. In terms of failures, previous

works study crash failures [8, 9] and Byzantine (arbitrary) failures [7, 10] in both

highly connected networks [8, 32, 33, 34] and loosely connected networks [35,

11, 36]. We study best effort broadcast, where all the correct nodes deliver the

message if the sender is correct in interdependent networks.

Reliable broadcast of multipath message forwarding has also been studied

in publish/subscribe systems [37, 38]. The use of soft links has been studied

to handle failures during message forwarding [37]. Each node maintains several

soft links prior to the failures that can be activated in the presence of failures.

We use similar idea of soft links to handle failures.

Failure detectors were proposed previously to detect faulty behaviors in dis-

tributed systems and networks [39, 40]. Chandra and Toueg [39] introduced

the notion of unreliable failures detectors, where each failure detector outputs

the identity of processes suspected to have crashed and nodes can rely on it

for message transmission. We also use failure detectors for c-nodes to detect

crashing c-nodes in their routing tables.

3. Interdependency Model

We study the interdependency between two networks: the power grid net-

work p-network and the communication network c-network. The p-network

consists of a set of n p-nodes p1, p2, · · · , pn (e.g. substations). The c-network

consists of a set of m c-nodes c1, c2, · · · , cm (e.g., routers, sensors, etc.). The

p-nodes are connected with power lines and the c-nodes are connected with com-

munication links. Each c-node constantly receives power from the p-nodes and
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every p-node constantly receives control signals from the c-nodes. We follow a

model similar with the one used in previous work [23, 22, 24], where a p-node

operates if it receives control signals from at least one c-node and a c-node op-

erates if it receives power from at least one p-node. We assume c-nodes do not

have backup battery, i.e., a c-node immediately fails if it does not receive power

from any p-nodes. In addition, we assume that power substations are connected

to power generators, i.e., each power substation is connected to a generator that

is sufficient for receiving power and we ignore the amount of power supply or

demand. In other words, p-nodes can only fail when there are no incoming

control signals.

Notation Meaning

Vc&Vp all the c-nodes and all the p-nodes, separately

Ec&Ep bidirectional edges between c-nodes and p-nodes, separately

Ecp directional edges from c-nodes to p-nodes

Epc directional edges from p-nodes to c-nodes

Ecp&Epc interdependency edges

oin degree number of outgoing interdependency edges

iin degree number of incoming interdependency edges

l1 maximum oin degree of any c-node

l2 maximum oin degree of any p-node

l3 maximum iin degree of any p-node

l4 maximum degree of any c-node

Table 1: Notations.

The interdependency between the networks can be represented in a graph

G = (V,E), as illustrated in Figure 1. We use several notations to represent the

network, as shown in Table 1, and we use edges and links interchangeably. V =

Vc∪Vp is the set of all the nodes and E = Ec∪Ep∪Ecp∪Epc is the set of all the

edges. The network is composed of both directional and bidirectional edges to

distinguish different features of independent/single network and interdependent

networks. Outgoing interdependent network degree (abbreviated as oin
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degree) and incoming interdependent network degree (abbreviated as iin

degree) represent the degree regarding the number of interdependency edges.

We also use the term degree by default to refer to the number of edges of a

node in an independent network. Without loss of generality, we call two c-nodes

neighbors or direct neighbors if there is an edge between them, i.e, they can

communicate with each other. The Ec edges are also called primary links. If

a c-node ci has an edge to a p-node pi, we call pi a p-neighbor of ci. Similarly,

if a p-node pi has an edge to a c-node ci, we call ci a c-neighbor of pi.

We now introduce several notions and define cascading failures.

Definition 1. (Path) A sequence of c-nodes (c1, · · · , cn) is a path if, ∀i ∈

{1, · · · , n− 1}, ci and ci+1 are neighbors.

Definition 2. (Root Failure) The failure of a c-node ci is a root failure if its

failure is not caused by the loss of incoming interdependency edges.

Definition 3. (Consecutive Failures) A sequence of c-nodes seq = (c1, · · · , cn)

is a set of consecutive failures if, ∀i ∈ {1, · · · , n− 1}, ci fails, n ≥ 2, and seq is

a path.

Definition 4. (Single Failure) The failure of a node ci is a single failure if none

of its neighbors fails.

Definition 5. (Cascading Failures) A number of nodes s = (c1, · · · , cn, p1, · · · , pn)

are cascading failures if, ∃ci, the failure of which makes all the nodes in s lose

their incoming interdependency edges.

We assume each c-node has a perfect failure detector, which provides

information about certain c-nodes being crashed or not and it satisfies the fol-

lowing properties.

Strong Completeness. Eventually, every c-node that crashes is perma-

nently detected by every correct c-node.

Strong Accuracy. If a c-node c is detected by any c-node, then c has crashed.
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The failure detector can be realized using a timeout mechanism. Specifically,

in order for a c-node c1 to detect the correctness of c-node c2, it sends a heart-

beat message and starts a timer. If c1 has not received a reply message before

the timer expires, c2 is suspected to be faulty. Although the failure detector

abstraction relaxes the timing assumption on nodes and links [7], performance

can be guaranteed under partial synchrony [41]: synchrony holds only after

some unknown global stabilization time, but the bounds on communication and

processing delays are themselves unknown to the nodes.

We consider the best effort reliable broadcast problem in c-network under the

above interdependency model, where all the correct nodes deliver the messages

if the sender is correct. It satisfies the following properties.

Validity. If a correct c-node broadcasts a message m to a set of c-nodes DES,

then every correct c-node in DES eventually delivers m.

No Creation. If a c-node delivers a message m with sender s, then m was

previously broadcast by s.

3.1. A Case Study based on Figure 1.

According to the definitions, we refer to the cascading failures as the failures

that are caused by the loss of interdependency edges and the nodes that cause

the cascading failures as root failures. For instance, in the example in Figure 1,

c2 is the root failure, c2, c4, and p3 are all single failures, and the set of c3

and p3 are cascading failures caused by c2. In this paper, we seek to handle

single crashing root failures in the c-network, each of which may cause several

cascading failures. For other cases such as the scenario where p-node failures can

also be root failures, our algorithm can be further extended to handle failures.

We propose to use soft links to handle failures, the details of which will

be introduced later in Section 4. Soft links are backup information of links can

be maintained or pre-built prior to the actual failures. For example, in order

to tolerate the cascading failures caused by root failure c2, c1 can maintain a

soft link to c3, which contains the necessary information to build the actual link

and does not have to be activated prior to the failures. When c2 fails and the
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failure is detected by the failure detector of c1, the soft link can be activated

and messages can be sent towards c3 if necessary.

We provide a centralized algorithm and a fully distributed algorithm to build

soft links to guarantee best effort broadcast in interdependent networks. The

design of using soft links can also be considered as a reference of building a

robust topology in the interdependent network settings. Such an algorithm

can be abstracted away to work in any interdependent networks with similar

properties. However, there are several practical problems regarding building soft

links. Indeed, in a wireless network, it is feasible to build soft links as backup

links and activate them later. In a sensor network, we must also make sure

that two nodes are within certain distance so as to make a connection between

them. In addition, in a wired network where we consider only routers, we have

to actually pre-build the physical links between routers to maintain the soft

links. We strengthen that our proposed algorithm can be used as a reference to

build a best effort broadcast protocol where if sender is correct and all the soft

links can be correctly built or maintained, all the correct receivers will receive

the same messages by the sender. Our solution can also be employed with other

techniques such as backup routes so as to handle failures.

4. Best Effort Broadcast in Interdependent Networks

In this section, we first introduce the preliminaries and then present our

best effort broadcast algorithm. Specifically, in addition to primary links, we

also propose to use soft links, which are the information of inactive links to

handle the failures of primary links. Through the activation of soft links, new

connections are built between correct c-nodes so that messages can be reliably

delivered in the presence of failures.

Our soft link technique is used to guarantee best effort reliable message trans-

mission through new communication links so that all the correct destination

nodes receive and deliver the same message. In order to correctly build soft

links, we employ two sub-algorithms: a cascading failure information collec-
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Figure 2: Example of p-link tables, c-link tables, and c-groups.

tion algorithm called f-information collection and a link management algorithm

to update routing tables of the c-nodes. As we will introduce in Section 4.3,

we use a fully distributed message transmission algorithm to analyze cascading

failures, based on which nodes can maintain soft links. The second part of the

distributed algorithm is link management, which is used to update the routing

tables when failures are detected, as shown in Section 4.4. We also present a

centralized algorithm where a centralized agent analyzes the cascading failures

for all the c-nodes. Finally, we discuss and compare the distributed and the

centralized algorithms.

4.1. Preliminaries

Routing Tables. As illustrated in Figure 2, each c-node maintains several

routing tables, the definitions of which are shown in Definition 6 to Definition 8,

where P (−→ci ) represents all the p-neighbors of ci and C(−→pi ) represents all the

c-neighbors of pi. A p-link table PT of a c-node consists of all the p-neighbors

and the number of their iin degrees. Similarly, for each p-node, there is a c-link

table CT , which consists of all the c-neighbors and their iin degrees. For each

p-node pi, all the c-nodes that have interdependency edges to it form a c-group

CG.
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Definition 6. (P-link table PT) For any c-node ci, PT = {p1, · · · } where

∀pj ∈ PT , pj ∈ P (−→ci ) and ∀pk ∈ P (−→ci ), pk ∈ PT .

Definition 7. (C-link table CT) For any p-node pi, CT = {c1, · · · } where

∀cj ∈ CT , cj ∈ C(−→pi ) and ∀ck ∈ C(−→pi ), ck ∈ CT .

Definition 8. (C-group CG) For any p-node pi, CG = {c1, · · · } where ∀cj ∈

CG, cj ∈ C(←−pi ) and ∀ck ∈ C(←−pi ), ck ∈ CG.

We assume that all the c-nodes communicate according to the routing tables

as in a regular communication network and we refer to the tables as regular

routing tables. In other words, for each c-node ci and a specific destination cj , if

ci wants to send a message to cj , ci looks up its routing table and verifies that

cj is reachable, finds a neighbor ck, and sends the message to ck.

In addition to the regular routing tables for message transmission in a regular

communication network, each c-node also maintains a p-link table PT , the c-link

tables for all the p-nodes in PT , denoted by {CT}, and all the c-groups that it

is a member of, denoted by {CG}. For instance, as shown in Figure 2, c-node

c1 has a p-link table with p1, the c-link table for p1, and one c-group with c1

and c2. Similarly, c-node c2 has a p-link table with p1 and p3, the c-link tables

for both p1 and p3, and a c-group, which only has c2 in it. All the tables can

be obtained heuristically during initial network setup. We ignore the details in

this paper since it is not the main focus of our work.

It is straightforward to see that the number of entries in a p-link table is at

most l1 and the number of entries in a c-link table is at most l2, according to

the notations in Table 1. Also, a c-node has at most l1 c-groups and the number

of c-nodes in each c-group is at most l3. Therefore, in addition to the routing

information in an independent communication network, the extra storage space

for each c-node is O(l1 + l1l2 + l1l3), where l1 is the size its p-link table, l1l2 is

the size of c-link tables for the p-nodes, and l1l3 is the size of all the c-groups.

In the worst case, l1 can be as large as n and l2 and l3 can be as large as m.

Therefore, the storage space complexity is limited by O(mn).
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Links. A c-node has two types of links: primary links and soft links. Primary

links of a c-node are the communication links to the neighbors in the c-network

in order to perform message transmission. When the primary links fail, soft

links are activated and connections are built. The corresponding c-nodes and

messages can then be transmitted through the activated soft links. Each soft

link is built to handle one root failure (a c-node) where the c-node may cause

multiple cascading failures. If there are consecutive root failures in each path,

the algorithm can be further extended to handle the failures.

Failure Detectors. As mentioned in Section 3, each c-node has a built-in fail-

ure detector module that provides information about whether certain c-nodes

have crashed or not. A c-node uses its failure detector to monitor the correctness

of its neighbors (c-nodes), the c-nodes in its c-link tables, and all the c-nodes

in its c-groups. Notice that the c-nodes in the c-link tables and c-groups may

not be direct neighbors of a c-node. Specifically, if a node ci wants to learn

the correctness of cj , which is not its direct neighbor, it can learn the correct-

ness of cj from the neighbors of cj . This is because each node must monitor

the correctness of its neighbors. However, ci does not need to maintain the

information of the neighbors of cj . Instead, it simply sends a message in the

format of [fd, ci, cj ] to cj , where fd represents the message type (abbreviated

for failure detection), ci represents the sender, and cj represents the receiver.

When a neighbor of cj receives this message, it returns the result to ci. Also

notice that if cj is not reachable by ci, ci cannot detect the failures.

4.2. Best Effort Broadcast Algorithm

Our best effort broadcast algorithm proceeds as follows. We use a fully

distributed f-information collection algorithm (as we will introduce in details in

Section 4.3) for each c-node ci to pre-collect the information of cascading failures

caused by the root failure of ci. Since the f-information collection algorithm is

run by each c-node to pre-analyze all the cascading failures caused by itself, the

analysis result is then sent to all the neighbors. Based on such information, each

c-node ci can learn in each path whether the failure of its neighbor will cause
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1 initialization:

2 {CT ′}, PT ′ ← {CT}, PT {Works on local copies of tables to analyze failures}

3 X.add(ci) {Output: a set of nodes that will fail}

4 watchlist() {Used to track subsequent cascading failures}

5 for px in PT ′ {Searches p-link table}

6 px.(iin degree)← px.(iin degree)− 1

7 if px.(iin degree) = 0 then

8 for ck in {CT ′}.px {Searches applicable c-link tables}

9 ck.(iin degree)← ck.(iin degree)− 1

10 if ck.(iin degree) = 0 then

11 watchlist.add(ck)

12 if !watchlist().empty() {There are no subsequent failures}

13 send [fcollect, ci, X, {CT ′}, PT ′] to watchlist().first

Figure 3: F-information collection algorithm (1) – Initialization, where {CT}.px denotes the

c-link table for px in set {CT}.

other failures in the path. Node ci can then maintain a soft link to the next

correct c-node cj in each path. The soft link contains the necessary information

for ci to build a connection with cj and the actual connection is made only

when the soft link is activated. Notice that in an independent communication

network, for each soft link of node ci, ci only maintains the information of the

neighbor of its neighbor, i.e., the c-node that is two hops away. However, in

interdependent networks, if the c-node cj that is two hops away from ci will

also fail, ci also needs to learn the identity of ck (the subsequent node of cj),

and analyzes whether ck will also fail. This process continues until ci learns

the next correct c-node in the path. For instance, if ci learns from its neighbor

cj that if ci and cj fails, ck will also fail but the subsequent node cl will be

correct, ci can then build a soft link with cl in order to handle the failure of cj .

In this case, ci also needs to learn from ck the identity of cl since ci does not

have the information beforehand. After soft links are activated, they become

the primary links and the primary links are discarded. New soft links will be

maintained after another round of f-information collection or when faulty nodes

are later recovered.
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14 on receiving [fcollect, cini, X, {CT ′}, PT ′] from cj

15 {CT ′′} ← merge({CT ′}, {CT}) {Works on copies of c-link table and

16 PT ′′ ← merge(PT ′, PT ) merges tables from previous nodes}

17 X.add(ci) {Adds itself to X since it will fail if cini fails}

18 con← False

19 prev(cini) = cj {Tracks previous node}

20 for px in PT ′′

21 px.(iin degree)← px.(iin degree)− 1

22 if px.(iin degree) = 0 then

23 for ck in {CT ′′}.px
24 ck.(iin degree)← ck.(iin degree)− 1

25 if ck.(iin degree) = 0 then

26 watchlist.add(ck)

27 con← True

28 if !watchlist().empty() then {There are subsequent failures}

29 send [fcollect,cini,X,{CT ′′},PT ′′] to watchlist().first

30 if con = False then {There are no subsequent failures}

31 send [freturn, cini, X, {CT ′′}, PT ′′] to prev(cini)

Figure 4: F-information collection algorithm (2) – Handling fcollect message, where {CT}.px
denotes the c-link table for px in set {CT}.

In the normal case when there are no failures, c-nodes use their regular

routing tables for message transmission. If a c-node ci detects the failure of its

subsequent node cj through the failure detector and it has a pending message

to cj , it first diagnoses the situation using the pre-collected f-information from

cj . If the destination node cl will also fail, ci simply stops broadcasting the

message since cl will also be faulty. Otherwise, ci activates the corresponding

soft link, builds the connection, and sends messages to the activated soft link.

For long term robustness, it is important for nodes to monitor the correctness

of the c-nodes in the routing tables to maintain the most up-to-date topology. As

we will describe in details in Section 4.4, link management is used to update the

tables. The soft links will be updated through another round of f-information

collection.

Discussion. In a mesh topology, it is possible that there are alternative paths
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to the destination, which we can use to guarantee message delivery. However, it

is also possible that failures cascade to the alternative paths. Therefore, the use

of soft links is very effective in guaranteeing that all the correct nodes deliver

the message. Also note that if some correct nodes are not initially connected,

e.g., under the scenario of network partition, the technique of using soft links is

not effective in guaranteeing best effort broadcast.

32 on receiving [freturn, cini, X
′, {CT ′′}, PT ′′] from cj

33 if cj = watchlist().first then {Receives message from the first node in watchlist()}

34 watchlist().remove(cj)

35 X ← merge(X,X′) {Merges results}

36 if watchlist().empty() then {No further cascading failures for analysis}

37 send [freturn,ci,X,{CT ′′},PT ′′] to prev(cini)

38 else {Continues to collect cascading failures}

39 send [fcollect,ci,X,{CT ′′},PT ′′] to watchlist().first

Figure 5: F-information collection algorithm (3) – Handling [freturn] message, where

{CT}.px denotes the c-link table for px in set {CT}.

4.3. F-information Collection

F-information collection is for a c-node cini to collect the information of

the cascading failures by analyzing its failure. In this case, cini is called the

root failure. This f-information collection algorithm is a distributed message

transmission algorithm, as shown in Figure 3, 4, and 5. There are two types of

messages, fcollect from cini to the nodes that will fail if cini fails, and freturn

back to cini when no further cascading failures will occur.

The algorithm proceeds as follows. For each root node cini, the output is a

set of cascading failures X. In the beginning, ci (the root failure) first copies its

c-link tables and p-link table, as shown in line (ln) 2, and adds itself to X. Next,

It looks up its p-link table and updates the entries by decreasing the iin degree

by 1, as shown in ln 5-6. If any p-node px has an incoming interdependency

degree of 0, indicating that if ci fails then px will also fail, ci starts to lookup

the c-link table of px, as shown in ln 7-8. Similarly, it also updates the c-link
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table by decreasing the iin degree by 1, as shown in ln 9. If any c-node ck in

the c-link table of px has iin degree of 0, ck will also fail if ci fails. ck is then

added to the watchlist(). A message with ci as the root node that initializes the

f-information collection, X, {CT ′}, and PT ′ is sent to the nodes in watchlist()

sequentially, i.e., the message is sent to one node in the watchlist() at a time,

as shown in ln 12-13. Note that the p-link table and c-link tables are updated

on the copies of the original tables and the goal is to mimic the effect of node

failures.

When a node ci receives such a message with X, {CT ′}, and PT ′, it first

adds itself to the set X and copies its c-link tables and p-link table. It also

merges {CT ′} and PT ′ to its tables and updates the common entries, as shown

in ln 15-16. The purpose of this step is to let nodes analyze the cascading effect,

taking into consideration previous failures. For instance, if c1 and c2 both have

an edge to p1 and c1 wants to analyze the cascading failures when it fails, c1 will

not include p1 in X since p1 still has an incoming edge when c1 fails. However, if

c2 fails due to the failure of another p-node (but also caused by the root failure

of c1), c1 must include p1 in X since now p2 has no incoming edges. Therefore,

each node must include its copies of c-link tables and p-link tables and each c-

node must merge the tables from previous nodes so as to analyze all the failures.

The nodes run the same algorithm to analyze the next c-node failure, as shown

in ln 20-29. When a c-node will not cause any further cascading failures of

c-nodes, it sends an freturn message with X to the previous node, as shown

in ln 30-31. This process continues until the message reaches the root node.

When the root node learns the set of cascading failures when it fails, it sends

the f-information to all its neighbors.

In the f-information collection algorithm, each c-node only keeps partial

information about the cascading failures, i.e., it receives the fcollect from a c-

node, computes the subsequent failures, and sends to the corresponding c-nodes

that will fail subsequently and waits for freturn messages. We use a watchlist()

scheme for the nodes to collect the information during such a process. This

can be represented as a logical Depth First Search (DFS) tree, as shown in
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Figure 6, where the arrows between nodes represent the message flow and the

links between parent and its child nodes may not be real communication links.

Instead, the logical tree just demonstrates the sequence of message transmission

during f-information collection. The root of the tree is the root node cini that

starts the f-information collection process, which is included in both fcollect

and freturn messages. When a node ci receives an fcollect message, it keeps

track of the previous node who sent the fcollect message (the parent in the

tree, which may or may not be the root node, as shown in ln 19) and watches

all the c-nodes that will fail after it fails, i.e., the child nodes in the tree. It

sends the fcollect to one node in its watchlist() at a time and waits for the

freturn messages. When ci receives an freturn message, it removes the node

from watchlist() , as shown in ln 34, and merges X ′ to X, as shown in ln 35.

If there are still nodes in its watchlist(), ci continues to send fcollect message

until it receives freturn from all of them. When watchlist() becomes empty,

ci sends an freturn message to its previous node prev(cini). This mechanism

is necessary for each node to collect all the cascading failures since each node

only carries partial information.

c1

c2

c4

c5

c3

c8

c6

c7
fcollect

freturn

Figure 6: Example of f-information collection.

An Example. As shown in Figure 6, c1 initializes the f-information collection,

where X = {c1} and watchlist() = {c2, c5, c8}. It first sends an fcollect to

c2 and c2 further sends an fcollect message with X = {c1, c2} to c3 and it
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has watchlist() = {c3, c4}. When c2 receives freturn message from c3 with

X = {c1, c2, c3}, it adds c3 to its X. Now c2 has watchlist() = {c4} and it

sends an fcollect to c4. When c2 receives X = {c1, c2, c3, c4} from c4, it adds

c4 to its X and the watchlist() becomes empty. It can then send an freturn

message to c1 and c1 has watchlist() = {c5, c8}. Similarly for other branches,

each message only contains partial information and each node needs to watch

its child nodes one by one until it learns results from all of them. Eventually,

c1 learns all the results and the f-information collection is completed.

The Watchlist. Notice that we use a sequential mode for nodes to send and

collect f-information, i.e., each node sends fcollect to one node in its watchlist()

at a time. This is because each message only contains partial information until

the information reaches the last node in the tree (c8 in the example). Due

to the use of the sequential mode, we avoid the case where some failures are

not included if the messages are transmitted in parallel to the nodes in the

watchlist(). For instance, c4 and c6 both have an edge to a p-node p9. If the

fcollect messages are sent concurrently to all the child nodes from c1, neither c4

nor c6 will consider the failure of p9 and therefore some failures may be ignored

during this process. In addition, the sequence of sending messages to nodes in

the watchlist() does not affect the result since eventually all the nodes will be

visited.

Additionally, it is possible that a node in the watchlist() is not reachable.

In this case, the c-node just skips the node and sends the message to next

node in the watchlist(). The reason is that we analyze the failures prior to

their occurrence. For instance, if a node c1 is not reachable by c2, c1 must not

be reachable by the root node c3 due to the fact that c2 is reachable by c3.

Therefore, if some nodes are not reachable prior to the failures, the use of soft

links is not effective and it is out of scope of this paper.

4.4. Link Management

In order for c-nodes to maintain the routing tables that represent the most

up-to-date topology, each c-node ci monitors the correctness of several c-nodes
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in addition to its direct neighbors. These c-nodes include the c-nodes in the

c-link tables and c-nodes in all the c-groups of ci. The algorithm is shown in

Figure 7, where {CG}.cj denotes all the c-groups that cj is a member of, cg.p

is the p-neighbor of the c-nodes in c-group cg, PT (p) is the entry for p-node p

in the p-link table, and |cg| is the number of nodes in c-group cg. The goal of

monitoring the c-nodes in the c-groups is to update the p-link tables since the

incoming interdependency degree of the p-nodes must be updated. The goal

of monitoring the c-neighbors of the p-neighbors of ci is to update the c-link

tables.

1 on event cj is faulty

2 if cj in {CT} then {Removes c-nodes from c-link tables directly if they are faulty}

3 for ct in {CT}.cj
4 ct.remove(cj)

5 if cj in {CG} then {Updates iin degree for the corresponding p-node of CG}

6 for cg in {CG}.cj
7 if ci = cg.leader then {Directly notifies other nodes in the c-groups}

8 send [cgupdate, cj ] to cg

9 else {Elects a new leader if existing leader fails}

10 send [le, cj , ck] to cg

11 PT (cg.p).(iin degree)←PT.(cg.p).(iin degree)−1

12 if |cg| = 1 then {ci becomes the only node in cg. }

13 send [sf, ci, cg.p] to {CT}.(cg.p) {Notifies all the nodes in c-link table of node cg.p}

14 if cj , p in F then

15 CT (p).(iin degree)←CT (p).(iin degree)−1

16 on receiving [cgupdate, cj ]

17 pl ← {CG}.cj .p

18 PT (pl).(iin degree)← PT (pl).(iin degree)− 1

19 on receiving [sf, cj , p]

20 F.add(cj , p)

Figure 7: Link management algorithm.

The key idea for the failure detection is that if a c-node fails, we must

remove the interdependency edges and update the tables at all the applicable

c-nodes. When the outgoing interdependency edges of a c-node are removed,
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the corresponding number in the p-link table must be updated, i.e., the iin

degree of the p-node in all the applicable p-link tables must be decreased by

one. Therefore, we introduce the idea of c-groups and we now introduce the

maintenance of c-groups using a leader-based scheme.

In each c-group, a leader is elected and agreed by all the c-nodes. Initially,

there is a default leader in each group. The leader monitors the correctness of

all the c-nodes in the same group. When it detects the failure of some c-node

cj , it updates its p-link table and notifies other c-nodes, as shown in ln 7-8.

Other c-nodes then simply update their p-link tables, as shown in ln 16-17. If

a c-node ci is not the leader in a c-group, it monitors the correctness of the

leader. If the leader fails, ci notifies all the nodes in the c-group with the id

of the new leader ck, as shown in ln 9-10. The leader is elected according to

the ids in a deterministic rotating manner. When a node receives or has sent

a [le] message where the message tag is le (abbreviated for leader election), it

stores the information of the new leader. If the node is the new leader, it sends

a message to all the nodes in the c-group and starts monitoring the correctness

of them. In addition, all the nodes also update their p-link tables since the

previous leader has failed.

On the other hand, when ci fails, we must remove the incoming edges. There-

fore, it is straightforward for a c-node cj to monitor the c-nodes in its c-link

tables since the c-link tables of cj are the c-link tables of the p-nodes in c′js

p-link table. In this case, if a c-node ci in the c-link table(s) fails, cj simply

removes the corresponding entry, as shown in ln 4 in Figure 7.

If the failure of the ci will cause the failures of some p-nodes but the failure

will not cascade to the c-network again, we should also update the c-link tables

for all the applicable c-nodes. For this purpose, we add another message type

called [sf ](abbreviated for single failure) where if a node ci becomes the only

node in a c-group cg, it sends a [sf ] message to the nodes in the c-link table of

node cg.p (the p-neighbor of c-nodes in cg), as shown in ln 12-13. When a node

ci receive a [sf ] message from some node cj , it starts monitoring the correctness

of cj and also adds cj to a set F , as shown in ln 19-20. If it detects the failure
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of a node in F , it decreases the degree of cj in the c-link table, as shown in ln

14-15.

Assume that a c-node can be the leader of at most t c-groups, the number

of c-nodes a c-node ci needs to monitor is limited by O(l4 + l1l2 + tl3), where l4

is the maximum number of neighbors ci needs to monitor, l1l2 is the maximum

number of c-nodes in the c-link tables of ci, and tl3 is the maximum number of

c-nodes ci needs to monitor in its c-groups. Since l1 and t can be as large as

n and l2 to l4 can be as large as m. The number of c-nodes a node needs to

monitor is limited by O(mn).

4.5. Correctness

We show the correctness of our best effort broadcast algorithm in the fol-

lowing theorem with proof. In the theorem, new failures refer to the failures

of nodes involved in the f-information collection and link management process.

Our approach guarantees correctness if no failures occur in the analysis results of

cascading failures during f-information collection. The idea is straightforward.

F-information collection is used to analyze the cascading failures. Failures dur-

ing the algorithm will cause inaccurate results and soft links may not be correctly

maintained.

Theorem 1. Let there be no consecutive root failures in each path. Best effort

reliable broadcast is achieved if there are no new failures among the nodes that

participate in each f-information collection and link management process.

Proof. The no creation property is straightforward. Since we assume nodes

can only fail by crashing, each message, if received by some c-node, must be

generated by the sender, i.e., no creation property is true.

We now show the validity property in two steps. We first show that if soft

links are correctly maintained and there are no consecutive failures, messages

are delivered to all the correct receivers. Then we show that if there are no new

failures during f-information collection and link management, soft links can be

correctly maintained. Based on these, the validity property can be proved.
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We assume that there are no consecutive root failures. Therefore, one soft

link for each node, if correctly maintained, is sufficient to guarantee that mes-

sages are reliably delivered to the next correct c-node. For each path, by in-

duction, messages can always be sent along the path to the destination. The

destination, if correct, will deliver the message according to the algorithm. Since

cs is correct, it sends the message to the paths to all the correct destinations.

Therefore, the statement is true.

Then we show that if there are no new failures during f-information collec-

tion, soft links can be correctly maintained. First, during link management,

since we use perfect failure detectors, faulty c-nodes will eventually be detected

by correct c-nodes. As discussed in Section 4.4, we update the p-link tables

through the use of c-groups and we update the c-link tables by monitoring of

c-nodes in the c-link tables and the use of [sf ] messages. If there are no failures

during message transmission, all the routing tables will eventually be correctly

maintained by all the c-nodes to reflect the most up-to-date topology. Second,

since the routing tables are correctly maintained, during f-information collec-

tion algorithm, each node is able to analyze the failures. The f-information

collection algorithm eventually visits all the c-nodes that will fail as a cascading

effect, if they were connected before the failures. Therefore, if there are no new

failures among all the nodes involved in each f-information collection process,

f-information collection enables each c-node to analyze the cascading failures.

The correctness of the theorem then follows.

4.6. A Centralized Cascading Failures Analysis Approach

We have presented an f-information algorithm and a link management algo-

rithm for nodes to analyze failures and to maintain the latest topology, which

are both fully distributed. An alternative solution for nodes to build soft links is

to maintain a centralized computing agent that could analyze cascading failures

for the nodes. In this section, we present an algorithm for the centralized agent

to analyze the failures.

Each node still maintains its regular routing tables, but not other routing
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1 on receiving [analyze, cini] from cini

2 {CT ′}, {PT ′} ← {CT}, {PT}

3 X ← ∅

4 X′ ← {cini}

5 while X′ 6= ∅

6 ci ← X′.first

7 X′.remove(ci)

8 for px in {PT ′}.ci
9 px.(iin degree)← px.(iin degree)− 1

10 if px.(iin degree) = 0 then

11 for ck in {CT ′}.px
12 ck.(iin degree)← ck.(iin degree)− 1

13 if ck.(iin degree) = 0 then

14 X.add(ck)

15 X′.add(ck)

Figure 8: Cascading failures analysis algorithm at a centralized agent C.

tables. The centralized agent maintains regular routing tables, c-link tables, and

p-link tables for all the nodes and it does not need to maintain c-groups. This

is mainly because c-groups are used for nodes to update their routing tables

according to the topology, which are not required for the centralized agent.

Let the centralized computing agent be C. The algorithm works as follows.

When a node ci wants to build soft links, it sends an [analyze] message to C

with its identity in it. After C receives the message, it analyzes the cascading

failures caused by ci and sends a message [cf, {idx, c}] to ci (message type cf

is abbreviated for cascading failure). In the message, {idx, c} represents a map

between any index node idx to a c-node c where idx represents a neighbor of ci

and c represents the next correct c-node c towards the direction from ci to idx.

In other words, the identity of c and the corresponding information associated

with it represent the soft link ci needs to build to handle the failure of its

neighbor idx.

As shown in Figure 8, the algorithm is similar with the f-information col-

lection algorithm, where for each c-node ci we simply look up the p-link table
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and the corresponding c-link tables and find whether there will be cascading

failures. The main difference is that f-information collection is usually run by

multiple c-nodes to collect all the cascading failures caused by a c-node cini. In

comparison, the centralized agent simply needs to look up all the c-link tables

and p-link tables to analyze cascading failures due to the fact that it maintains

the topology for all the nodes. We use X to represent all the cascading failures

that will be caused by the crash of cini. X ′ is used as a buffer for the centralized

agent to store the incoming requests.

In order to maintain the most up-to-date topology, the centralized agent

also needs to collect information from nodes to update its routing tables. In

order to detect the failures of c-nodes, each c-node still needs to monitor the

correctness of its neighbors. In the presence of the failure of any of its neighbors,

the c-node simply sends a message to the centralized agent. In this paper, we

assume that a p-node will fail only when it loses all the control signals from the

c-node. Therefore, the centralized agent does not need to collect information of

faulty p-nodes. After the centralized agent receives information about a faulty

c-node ci. It simply looks up the p-link table for the c-node, i.e., {PT}.ci, and

decreases the incoming interdependency degree of ci by one. If any p-node pj

in {PT}.ci has iin degree of zero, ci further looks up the c-link table for pj , i.e.,

{CT}.pj , and decreases the iin degree by one. This is a similar process with

the distributed algorithm, where it continues until all the tables are updated.

After a c-node detects a failure, the c-node will also send a request to the agent

to obtain information for the new soft links.

4.7. Discussion

The correctness of soft links is guaranteed if there are no new failures during

f-information collection and link management. In large-scale and highly depen-

dent and dynamic networks, the assumption may not be practical. In the case

where new failures may occur when running the algorithms, nodes may main-

tain out-of-date c-link and c-group tables and cause wrong analysis results. It

is also possible that the f-information algorithm halts where a node waits for
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an freturn message but some nodes during message transmission fail. As we

will discuss further in Section 5, this does not guarantee best effort broadcast

such that some messages are not delivered to all the correct destinations. We

can handle this problem by also using alternative routes for message delivery

to increase the delivery rate and adding timers during f-information to ensure

that the algorithm will end in the presence of failures.

As discussed previously, the storage complexity for each node is O(l1+ l1l2+

l1l3) and the complexity for the number of nodes each failure detector module

needs to detect is O(l4+l1l2+tl3). In the worst case, both are limited by O(mn).

It is not hard to conclude that in the worst case, a c-node might eventually need

to maintain the information of all the networks and monitor the correctness of

all the c-nodes. However, in this case, it is less possible that a failure of a c-node

will cause multiple cascading failures.

Compared to the distributed algorithm, where each node needs to maintain

extra information, the centralized algorithm requires the centralized agent to

maintain the information of the whole topology and nodes only need to main-

tain minimum information about its neighbors and monitor the correctness of

them. Therefore, the storage space for each node is O(l4), which is limited by

O(m). However, when multiple nodes want to analyze cascading failures simul-

taneously, high overhead of communication and storage space might be triggered

for the centralized agent as the centralized agent has to analyze the cascading

failures in each path for all the nodes. Such overhead cannot be avoided during

initial network setup phase and will be generated when failures have occurred.

Similar with the distributed algorithm, new failures may also occur during the

cascading failures analysis. This indicates that the information may also be

inaccurate.

Last but not least, our work intends to study cyber impact in interdependent

networks. Therefore, we assume that no p-nodes will fail by themselves, i.e.,

p-nodes will only fail if they lose incoming interdependency edges. However,

our algorithm can be easily extended to handle root failures caused by p-nodes.
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5. Evaluation

We implement and evaluate our algorithm using OMNeT++ network sim-

ulation framework [42]. We construct various sizes of graphs, including both

synthetic graphs and graphs constructed from real datasets. We mainly utilize

synthetic graphs to test and evaluate the performance of the algorithms under

extreme topologies. We also evaluate our algorithm and present a case study

based on the graphs constructed from real datasets from HSIP [43].

We compare the performance of our distributed algorithm (abbreviated as

DA) with the Baseline and the Soft Link (abbreviated as SF), which are pro-

tocols that only work in an independent communication network. Baseline is a

regular routing algorithm where nodes use routing tables for message transmis-

sion. SL builds soft links between nodes that are two hops away. In addition,

we also implement the centralized cascading failures analysis algorithm (abbre-

viated as CA) and evaluate the overhead of the algorithms and accuracy of

routing information.

We limit the number of sink nodes to fewer than three and each node gen-

erates a packet by doubling the previous period (i.e., 0.01ms, 0.02ms, 0.04ms,

etc.). The average delay between two neighbors is set to 0.01ms. When fail-

ure detectors are used, each node sends a heartbeat message every 0.3ms and

the timer is set to 0.1ms. We set up the maximum outgoing interdependency

edges for different graphs to evaluate the interdependent networks with different

dependency levels. After the interdependent networks are generated, we check

the validity of them by ensuring that every node has at least one incoming

interdependency edge.

We first assess the network traffic according to message types to evaluate

the overhead of the algorithms. We observe that the regular network traffic in

SL, CA, and our proposed DA algorithm are lower than that of the Baseline.

However, the failure detection and f-information do not decrease the regular

traffic to a large degree. In comparison, although the CA algorithm generates

lower traffic for both failure detection and failure analysis, the regular traffic is

27



also much lower than other algorithms. This is mainly due to the fact that all

the nodes need to obtain their information through the centralized agent. Since

the centralized agent generates high overhead for failure analysis and may not

reply to the nodes in a timely manner, the regular traffic is then lowered for all

the nodes.

We then evaluate the robustness of our distributed algorithm by measuring

the packet drop rate and the average delay of failure detection. Note that we

have already proved that best effort broadcast can be guaranteed if there are

no new failures during f-information collection and link management. However,

as discussed in Section 4.7, in a large-scale and dynamic network where failures

are frequent, new failures can occur and best effort broadcast may not be guar-

anteed. Therefore, we also evaluate the packet drop rate to assess the efficiency

of our algorithm. We notice that our proposed algorithm has largely reduced

the packet drop rate but a longer failure detection delay is incurred. Lastly,

we evaluate the f-information collection delay using various topologies. We find

that due to the way we model the networks, the performance is highly impacted

by the interdependency levels of the two networks. We also observe that there

is no generic relationship between the number of nodes and the average latency

for f-information collection. This indicates that f-information collection process

does not increase the overall complexity in a scalable network.

5.1. Failure Handling Overhead

We assess the network traffic of different message types and compare our

algorithm with Baseline, SL, and CA. This is used to assess the overhead caused

by our algorithm for distributed failure analysis. In this experiment, we use 200

c-nodes and 200 p-nodes with maximum oin degree of 2. In the c-network,

we generate a random mesh graph where the average degree is 3. Each node

has 0.1 probability of being crashed. As observed in Figure 9(a), the Baseline

algorithm only has regular traffic. In comparison, since SL uses failure detector

for each node to monitor the correctness of its neighbors, the regular traffic is

lower than that of the Baseline. However, the traffic for failure detection is
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Figure 9: Evaluation of the network traffic.

relatively stable. This is because each node has a fixed number of neighbors to

monitor unless failures occur. CA relies on a single computing agent to analyze

the failures for all the c-nodes. As shown in Figure 10(a), failure analysis and

failure detection consistently generate low traffic. The traffic for failure detection

is similar with that of SL. This can be explained by the fact that c-nodes in

both algorithms only need to monitor the correctness of their neighbors. Also,

since nodes all send messages to the centralized agent to obtain information for

cascading failures and soft links, it also generates low traffic for failure detection.

However, we notice that the regular traffic for CA is much lower than all other

three algorithms. This is mainly because when the centralized agent handles

concurrent requests from the c-nodes, it has to process the requests sequentially,

which causes high overhead and the requests.

Compared to other three algorithms, our proposed DA algorithm generates

higher volume of traffic since each node needs to monitor the correctness of a

larger number of nodes. Notice that as discussed in Section 4.7, the c-nodes that

a failure detector needs to monitor may not be the direct neighbors, where the

correctness of the c-nodes is monitored by their neighbors. We count these no-

tification messages also as traffic for failure detection. As shown in Figure 9(b),

the regular traffic is lower than that of both Baseline and SL but the traffic for
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for the centralized cascading failures analysis

algorithm.
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Figure 10: Evaluation of the algorithms.

failure detection is higher than that of SL. The f-information collection traffic

is very high in the beginning. This is because all the nodes need to run f-

information collection during network setup in the beginning of the experiment.

After the initialization, f-information collection is run only when failures occur.

#Nodes Algorithm %Packet Drop Avg FD Delay

Baseline 52.19% N.A.

50 SL 28.45% 0.19ms

CA 12.35% 0.14ms

DA 3.03% 0.55ms

Baseline 51.80% N.A.

300 SL 32.25% 0.21ms

CA 14.83% 0.34ms

DA 13.03% 7.14ms

Table 2: Packet drop rate and average failure detection delay of the algorithms

5.2. Robustness

In order to evaluate the performance of the algorithms under failures, we

employ a chain-based topology for c-network with 50 nodes where the nodes are
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organized sequentially and each node is connected with at most two other nodes.

There are 50 p-nodes and the maximum oin degree is set to 2 for both c-nodes

and p-nodes. We set up the sink nodes to be random nodes close to the middle

of the chain. In addition, only nodes in the first half of the chain may fail. As

shown in Table 2, since the Baseline does not have a scheme to handle failures,

the packet drop rate is high. This can be explained by the fact that each node

becomes critical in message transmission. SL has a much lower packet drop rate

because it maintains soft links between nodes that are two hops away, which are

still effective when the cascading failures do not include too many consecutive

failures. The CA and our proposed DA algorithm achieve the lowest packet

drop rate since they both handle cascading failures. The trade-off for CA is a

lower performance as mentioned earlier. The trade-off for DA is a slightly longer

failure detection delay. Since each node needs to monitor the correctness of a

larger number of nodes, the failure detection generates a much longer delay due

to the communication overhead.
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Figure 11: Average delay for f-information collection.

We also evaluate the packet drop rate and the average failure detection delay

with 300 c-nodes and 300 p-nodes. According to Table 2, the packet drop rate
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for Baseline is similar with previous case and the packet drop rate for SL slightly

increases. This is because in SL each node simply monitors the correctness of it

neighbors. Although our proposed DA algorithm still achieves the lowest packet

drop rate, the packet drop rate is larger than the case with fewer nodes. Also,

since the topology has a larger number of nodes, the failure detection delay

is also longer, especially with the nature of chain-based topology where there

might be a large number of hops between any two nodes. Therefore, it is not

hard to conclude that in highly interdependent and large-scale networks, the

failure detection delay and packet drop rate can further be increased.

5.3. F-information Collection Delay

In order to evaluate the performance of the algorithm, we assess the average

delay of f-information collection process using topologies of various network sizes

with 5 to 500 c-nodes and p-nodes. We generate random mesh topologies where

the average degree of c-nodes is 3. A benchmark x-y represents a graph with x c-

nodes, x p-nodes, and the maximum oin degree is y. Based on our observation,

when the oin degree is bigger than 4, it is less possible that the failure of a

c-node causes multiple failures, i.e., soft links between nodes that are two hops

away are sufficient. Also, it is straightforward that if each node only has one

outgoing interdependency edge, the networks become highly interdependent,

where a single failure can cause the failures of almost the whole network.

We also show the depth of the tree and the average number of actual hops

during f-information collection in Figure 10(b), which might not be the same

with the number of nodes in the tree since the parent node and a child node

may not be direct neighbors. We notice that there is not a generic relationship

between the number of nodes and the number of hops due to the way we link

the nodes. We also notice that the average depth of the tree is 2 to 3 but it can

gets higher in extreme cases. This indicates that a root failure of a c-node will

only cause failures of some c-nodes and the failures will not cascade furthermore.

Additionally, as shown in Figure 11, we also evaluate the average latency for

f-information collection. Each f-information collection runs for 0.05 to 0.34ms,
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where the average latency is directly related to the number of actual hops due

to the fact that our algorithm essentially visits all the nodes that will fail. This

can be explained by the fact that the f-information collection visits the nodes

in a DFS manner so that the delay is directly related to the number of nodes

that will fail and the distance between them.

2 3 4 5 6 7 8 9 10

0

20

40

60

80

100

3 3 3 3 3 3 3 4 4

106

70

57

37

26
20

14 12
8

Interdependency Degree

#
A

ff
ec

te
d

N
o
d

es

Figure 12: Case Study: Interdependency degree v.s. Affected Nodes. The red line represents

the number of c-nodes that will cause cascading failures and the bars represent the average

number of affected nodes under each failure.

5.4. A Case Study of Infrastructure Vulnerabilities Based on Geographical In-

terdependencies

In addition to providing a resilient algorithm that handles cascading failures,

our algorithm also serves as a data analysis model to predict and analyze the vul-

nerabilities of infrastructures. We construct heterogeneous networks based on

HSIP datasets [43]. We use cell towers to construct the c-network and electrical

substations to construct the p-network. Although our model works specifically

well for a smart grid network, it is extremely challenging, if not impossible,

to obtain data for the c-network (e.g., control systems infrastructures) as they

are usually proprietary. Therefore, we use cell towers for this case study to

construct the network and study the interdependencies.

We utilize the geographical locations of the nodes to construct the networks.
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represents interdependency degree.

Then we build the interdependency according to the physical distances of the

nodes. In order to evaluate the results, we construct graphs with different

interdependency degrees, varying from 2 to 10. In other words, for a c-node

with x interdependency degree, it has an interdependency edge to x p-nodes

that are the closest to it according to geographical locations. Through this

process, we are able to analyze the vulnerabilities of the infrastructures based

on geographical locations.

We first assess the number of c-nodes, the single failures of which will cause

cascading failures for the state of Florida, which has around 900 cell towers and

1000 electrical substations. As observed in Figure 12, the red line represents

the number of nodes that can cause cascading failures. In other words, any of

those c-nodes is the only node that controls one specific electrical substation.

As expected, such a number decreases dramatically as the interdependency de-

gree increases. When the interdependency degree grows to higher than 7, the

maximum number of nodes that can cause cascading failures is smaller than 20.

We also evaluate the average number of cascading failures that are caused by

single c-node root failures. As observed in Figure 12, the bar chart represents

the average number. We found that the average number of cascading failures
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for each benchmark of interdependency degree is 3 to 4. In other words, single

failures will not cause high cascading impact to the infrastructures.

Finally, we also evaluate the number of cascading failures caused by different

number of root failures. In this scenario, for each experiment, we set up a num-

ber x and select x random root failures and evaluate the number of cascading

failures caused by the x root failures. For each x value, we run the experi-

ment 10 times and get the average number of cascading failures. As observed

in Figure 13, the number of cascading failures increases as the number of root

failures increases. This can be easily explained by the fact that a larger number

of nodes will be affected as the number of root failures increases. In addition,

as the interdependency degree increases, the number of cascading failures de-

creases. This is also expected since by increasing the average interdependency

degree, the number of cascading failures each node can cause is reduced, i.e.,

the resilience of the topology is increased.

To summarize, increasing interdependency degree will in general increase the

resilience of the networks but it will also increase redundancy in interdependency

edges. However, the number of cascading failures for each scenario will not

decrease greatly. Furthermore, simply increasing interdependency degree is still

not useful to guarantee message delivery during c-node crashes. This indicates

that soft links are still necessary in guaranteeing message delivery.

6. Conclusion

In this paper, we study best effort broadcast in the interdependent networks

of a multihop communication network and a power grid network. We handle

crash failures through the use of soft links in the communication network. In

order to efficiently build soft links to handle cascading failures, we present a

fully distributed algorithm and a centralized algorithm for the nodes to analyze

the failures. Each node needs to maintain minimum information in addition

to an independent network, which is updated from time to time to reflect the

up-to-date network topology. Based on our evaluation results, our algorithm is
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effective in handling cascading failures with little overhead.
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