
BEAT: Asynchronous BFT Made Practical
Sisi Duan

UMBC

sduan@umbc.edu

Michael K. Reiter

UNC Chapel Hill

reiter@cs.unc.edu

Haibin Zhang

UMBC

hbzhang@umbc.edu

ABSTRACT
We present BEAT, a set of practical Byzantine fault-tolerant (BFT)

protocols for completely asynchronous environments. BEAT is flex-

ible, versatile, and extensible, consisting of five asynchronous BFT

protocols that are designed to meet different goals (e.g., different

performance metrics, different application scenarios). Due to mod-

ularity in its design, features of these protocols can be mixed to

achieve even more meaningful trade-offs between functionality

and performance for various applications. Through a 92-instance,

five-continent deployment of BEAT on Amazon EC2, we show that

BEAT is efficient: roughly, all our BEAT instances significantly

outperform, in terms of both latency and throughput, HoneyBad-

gerBFT, the most efficient asynchronous BFT known.

CCS CONCEPTS
• Security and privacy → Systems security; Distributed sys-
tems security; • Computer systems organization→ Reliabil-
ity; Availability;

KEYWORDS
Byzantine fault tolerance, BFT, asynchronous BFT, blockchain, ro-

bustness, threshold cryptography

1 INTRODUCTION
State machine replication (SMR) [64, 81] is a fundamental soft-

ware approach to enabling highly available services in practical

distributed systems and cloud computing platforms (e.g., Google’s

Chubby [20] and Spanner [29], Apache ZooKeeper [53]). Its Byzan-

tine failure counterpart, Byzantine fault-tolerant SMR (BFT), has

recently regained its prominence, as BFT has been regarded as the
model for building permissioned blockchains where the distributed

ledgers know each other’s identities but may not trust one another.

As an emerging technology transforming businessmodels, there has

been a large number of industry implementations of permissioned

blockchains, including Hyperledger Fabric [7, 87], Hyperledger

Iroha [56], R3 Corda [30], Tendermint [88], and many more. The

Hyperledger umbrella [5], for instance, has become a global collab-

orative open-source project under the Linux Foundation, now with

more than 250 members.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CCS ’18, October 15–19, 2018, Toronto, ON, Canada
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5693-0/18/10. . . $15.00

https://doi.org/10.1145/3243734.3243812

Asynchronous BFT protocols [14, 21, 23, 70] are arguably themost

appropriate solutions for building high-assurance and intrusion-

tolerant permissioned blockchains in wide-area (WAN) environ-

ments, as these asynchronous protocols are inherently more ro-

bust against timing and denial-of-service (DoS) attacks that can

be mounted over an unprotected network such as the Internet.

Asynchronous BFT ensures liveness of the protocol without de-

pending on any timing assumptions, which is prudent when the

network is controlled by an adversary. In contrast, partially syn-

chronous BFT (e.g., PBFT [27]) guarantees liveness only when the

network becomes synchronous (i.e., satisfies timing assumptions).

For instance, it was shown in [70] that PBFT would achieve zero

throughput against an adversarial asynchronous scheduler.

Challenges andopportunities in adopting asynchronous per-
missioned blockchains.While a recent asynchronous BFT proto-

col, HoneyBadgerBFT [70], significantly improves prior asynchro-

nous BFT protocols [14, 21, 23, 70], there are still significant pain

points and challenges that prevent it from being used in practice.

Meanwhile, there are also new opportunities for asynchronous BFT

with the rise of blockchains.

Performance (latency, throughput) issues. Compared to partially syn-

chronous BFT protocols (e.g., PBFT [27]), HoneyBadgerBFT has

significantly higher latency and lower throughput, in part due to

its use of expensive threshold cryptography (specifically, threshold

encryption [10] and threshold signatures [17]). This is particularly

visible in cases where each replica has limited computation power.

These limitations are further exacerbated by various engineering

issues. For example, HoneyBadgerBFT was evaluated at only 80-

bit security and it will be even slower if implemented with now-

standard 128-bit security. Moreover, due to its use of an erasure-

coding library zfec [93], HoneyBadgerBFT can only support Reed-

Soloman codes (for which better alternatives exist) and at most 2
8

servers.

No one-size-fits-all BFT. In partially synchronous environments, one-

size-fits-all BFT protocols have been hard to achieve (as has been ar-

gued in various works, e.g., [8, 31, 59]). Indeed, a variety of partially

synchronous BFT protocols [1, 8, 16, 27, 28, 31, 33, 59] have been

proposed to meet different needs. For instance, chain-based BFT

protocols, such as Aliph-Chain [8], BChain [33], and Shuttle [90],

favor throughput over latency. Q/U [1] achieves fault-scalability

that tolerates increasing numbers of faults without significantly

decreasing performance. Zyzzyva [59] and Aliph [8] are hybrid
protocols that have high performance in failure-free cases. More-

over, a large number of robust BFT protocols [4, 9, 16, 28, 91] aim

to provide a trade-off between performance and liveness during

attacks that affect the timing behavior of the network.

While robustness is natively achieved in asynchronous BFT, we

still require different designs and trade-offs for different perfor-

mance metrics. Unlike HoneyBadgerBFT, which was designed to

1

https://doi.org/10.1145/3243734.3243812


CCS ’18, October 15–19, 2018, Toronto, ON, Canada Sisi Duan, Michael K. Reiter, and Haibin Zhang

optimize throughput only, BEAT aims to be flexible and versatile,

providing protocol instances optimized for latency, throughput,

bandwidth, or scalability (in terms of the number of servers).

Append-only ledger vs. smart contracts. We advocate distinguish-

ing two different classes of blockchain applications: append-only

ledgers and on-chain smart contracts. The former corresponds to

append-only, linearizable storage systems (hereinafter, BFT stor-
age), and the latter corresponds to general SMR. While they share

security requirements (agreement, total order of updates, liveness),

general SMR requires each replica to maintain a copy of all service

state to support contracts that operate on that state. In contrast,

BFT storage may leverage erasure coding to reduce overall storage

by allowing servers to keep only fragments. (See Sec. 3 for formal

definitions.) Both of the applications are rather popular. Applica-

tions such as food safety [92] and exchange of healthcare data [54]

are examples of append-only ledgers, while AI blockchain [86] and

financial payments [55] fall into the category of requiring smart

contracts. Internet of things (IoT) with blockchains may be of either

type, depending on the applications: if one just uses blockchains

to store and distribute IoT data to avoid the single point of failure

that the clouds may have, then we just need the distributed ledger

functionality; if one additionally uses blockchains to consume and

analyze the data, then we will additionally need smart contracts.

BFT storage may be extended to support off-chain smart con-

tracts run among clients (e.g., Hyperledger Fabric [7]). While off-

chain smart contracts have many benefits (e.g., achieving some level

of confidentiality, as argued in [7]), they also have limitations: 1)

they are less suited to running complex smart contract applications

with power- and computation-restricted clients (e.g., IoT devices);

2) they require communication channels among clients; and 3) they

do not support efficient cross-contract state update.

Some blockchain systems use BFT for building consensus order-

ing services (e.g., Hyperledger Fabric). We find that BFT storage

may be used to model the consensus ordering service, and a more

efficient BFT storage can lead to a more efficient ordering service.

When designing BEAT, we aimed to answer the following major

question: Can we have asynchronous BFT storage that significantly

outperforms asynchronous general SMR?

Flexible read. Some applications benefit from flexible reading, i.e.,

reading just a portion of a data block as needed (instead of the whole

block). For example, in a blockchain that stores video, a user may

only want to read the first portion of the stored video. This can be

challenging when we use erasure-coding as the underlying storage

mechanism. BEAT aims to achieve flexible read with significantly

reduced bandwidth.

BEAT in a nutshell.We design, implement, and evaluate BEAT —

a set of practical asynchronous BFT protocols that resolve the above

challenges. First, BEAT leverages more secure and efficient cryp-

tography support and more flexible and efficient erasure-coding

support. Second, BEAT is flexible, versatile, and extensible; the

BEAT family includes asynchronous BFT protocols that are de-

signed to meet different needs. BEAT’s design is modular, and it can

be extended to provide many more meaningful trade-offs among

functionality and performance. Third, BEAT is efficient. Roughly,

all our BEAT instances significantly outperform, in terms of both

latency and throughput, HoneyBadgerBFT.

TheBEATprotocols.BEAT includes five BEAT instances (BEAT0–

BEAT4). BEAT0, BEAT1, are BEAT2 are general SMR that can sup-

port both off-chain and on-chain smart contracts, while BEAT3 and

BEAT4 are BFT storage that can support off-chain smart contracts

only. We summarize the characteristics of the BEAT protocols in

Table 1 as a series of improvements to HoneyBadgerBFT.

• BEAT0, our baseline protocol, incorporates a more secure and ef-

ficient threshold encryption [85], a direct instantiation of thresh-

old coin-flipping [22] (instead of using threshold signatures [17]),

and more flexible and efficient erasure-coding support.

• BEAT1 additionally replaces an erasure-coded broadcast (AVID

broadcast) [24] used in HoneyBadgerBFT with a replication-

based broadcast (Bracha’s broadcast [19]). This helps reduce

latency when there is low contention and the batch size is small.

• BEAT2 opportunisticallymoves the encryption part of the thresh-

old encryption to the client, further reducing latency. BEAT2

does so at the price of achieving a weaker liveness notion, but

can be combined with anonymous communication networks to

achieve full liveness. Asynchronous BFT with Tor networks has

been demonstrated in HoneyBadgerBFT.

BEAT2 additionally achieves causal order [21, 35, 79], a rather

useful property for many blockchain applications that process

transactions in a “first come, first served” manner, such as stock

trading and financial payments.

• BEAT3 is a BFT storage system.While HoneyBadgerBFT, BEAT0,

BEAT1, and BEAT2 use Byzantine reliable broadcast [19, 24, 67],

we find that replacing Byzantine reliable broadcast with a differ-

ent and more efficient primitive — bandwidth-efficient asynchro-

nous verifiable information dispersal (AVID-FP) [45] (using fin-

gerprinted cross-checksum) suffices to build a BFT storage. The

bandwidth consumption in BEAT3 is information-theoretically

optimal. To order transactions of size B, the communication

complexity of BEAT3 is O(B), while the complexity for Hon-

eyBadger and PBFT is O(nB) (where n is the total number of

replicas). This improvement is significant, as it allows running

BEAT in bandwidth-restricted environments, allows more ag-

gressive batching, and significantly improves scalability.

• BEAT4 further reduces read bandwidth. BEAT4 is particularly

useful when it is common that clients frequently read only a

fraction of stored transactions. We provide a generic framework

to enable this optimization, and BEAT4 is a specific instanti-

ation of the framework. Roughly, BEAT4 reduces the access

overhead by 50% with around 10% additional storage overhead.

To achieve this, we extend fingerprinted cross-checksums [45]

to handle partial read and to the case of pyramid codes [51],

and we design a novel erasure-coded asynchronous verifiable

information dispersal protocol with reduced read bandwidth

(AVID-FP-Pyramid). Both techniques may be of independent

interest.

To our knowledge, all the erasure-coded systems against arbi-

trary failures in reliable distributed systems community [6, 25,

32, 41, 46] use conventional MDS (maximum distance separable)

codes [69] such as Reed-Solomon codes [78] and they inherit

the large bandwidth features of MDS codes. On the other hand,

a large number of works aim to reduce the read bandwidth by

designing new erasure coding schemes [42–44, 50–52, 58]. The

2



BEAT: Asynchronous BFT Made Practical CCS ’18, October 15–19, 2018, Toronto, ON, Canada

Discussed in New Techniques Features Applicability

BEAT0 Section 6

more efficient labeled threshold encryption and coin flipping;

more flexible and efficient erasure coding support

baseline protocol; outperform

HoneyBadgerBFT in all metrics

general SMR

BEAT1 Section 7 replacing AVID broadcast with Bracha’s broadcast latency optimized general SMR

BEAT2 Section 7 client-side labeled CCA threshold encryption

latency optimized

additional achieve causal order

general SMR

anonymous networks

BEAT3 Section 8 a novel protocol combining AVID-FP and ABA storage, bandwidth, throughput optimized BFT storage

BEAT4 Section 9

extending fpcc to single fragments and pyramid

codes; a novel AVID-FP saving bandwidth

further saving read bandwidth BFT storage

Table 1: Characteristics of BEAT protocols.

systems using these codes work in synchronous environments

only, and do not achieve any strong consistency goals even in

the crash failure model (let alone Byzantine failures). It is our

goal to blend these two disjoint communities and offer new in-

sights to both, by designing novel Byzantine reliable broadcast

and BFT protocols with reduced bandwidth.

• BEAT’s design is modular, and features of these protocols can

be mixed to achieve even more meaningful trade-offs among

functionalities, performance metrics, and concrete applications.

2 RELATEDWORK
The (subtle) differences between (BFT) SMRand (BFT) atomic
registers. State machine replication [81] is a general technique to

provide a fault-tolerant services using a number of server repli-

cas. It can support arbitrary operations, not just read and write. In

SMR, the servers need to communicate with each other and run

an interactive consensus protocol to keep the servers in the same

state.

Register specifications were introduced by Lamport in a series of

papers [62, 65, 66], with atomic register as the strongest one. The

notions of linearizability andwait-freedom for atomic registerswere

introduced by Herlihy andWing [48] and Herlihy [47], respectively.

Atomic registers can only support reads and writes.

Atomic registers can be realized in asynchronous distributed sys-

tems with failures. However, state machine replication cannot be

achieved in asynchronous environments [38], unless it uses random-

ization to circumvent this impossibility result. HoneyBadgerBFT

and BEAT fall into this category.

BFT SMR is suitable for a number of permissioned blockchain ap-

plications (e.g., on-chain smart contracts), while atomic registers are

more suitable to model data-centric and cloud storage applications.

Comparison with erasure-coded Byzantine atomic registers.
An active line of research studies erasure-coded Byzantine atomic

registers, as erasure coding can be used to provide storage reduc-

tion and/or reduce bandwidth. Notable systems include Pasis [41],

CT [25], M-PoWerStore [32], Loft [46], and AWE [6]. These systems

have rather different properties from BEAT storage (i.e., BEAT3 and

BEAT4). Loft has the same communication complexity as BEAT stor-

age, but it only achieves obstruction-freedom, vs. BEAT’s (random-

ized) wait-freedom. AWE, Pasis, CT, and M-PoWerStore have larger

communication complexity. Additionally, while AWE achieves wait-

freedom, it relies on an architecture that separates storage from

metadata and therefore may rely on more servers.

Erasure-code choice in BEAT4 (Or:Why pyramid codes?). As
discussed in Section 1, an ingredient in BEAT is a novel adaptation

of fingerprinted cross-checksums [45] to accommodate pyramid

codes. Pyramid codes and their derivatives have already been used

in practice, although in a very different setting (data centers), and

offer a significant performance boost [26, 51, 52]. We leverage them

here to reduce bandwidth costs for fragments that contain real

data. Its close competitor, Xorbas codes [80], reduces bandwidth

cost for both data and redundant fragments, though we do not

leverage them here. We also do not choose the (more complex)

derivatives of basic pyramid codes such as generalized pyramid

codes [51] and local reconstruction codes [52] that offer maximal

recoverability and improve the fault tolerance of basic pyramid

codes. For our designed protocol, these codes offer even greater

recoverability than we need and hence would be overkill. Weaver

codes [43], HoVer codes [44], and Stepped Combination codes [42]

(belonging to LDPC codes) do not provide the bandwidth savings

and flexibility that we need.

Another direction of research in code design is to read instead

from more fragments (see [50, 58] and references therein), but less

data from each. However, the bandwidth savings are only around

20%∼30%, much less than pyramid codes and its derivatives. In

addition, these codes do not fit our setting where we assume a fixed

number of servers may behave maliciously and we attempt to mask

as many Byzantine servers as possible.

3 SYSTEM AND THREAT MODEL
Timing assumptions.Distributed systems can be roughly divided

into three categories according to their timing assumption: asyn-

chronous, synchronous, or partially synchronous. An asynchronous

system makes no timing assumptions on message processing or

transmission delays. If there is a known bound on message process-

ing delays and transmission delays, then the corresponding system

is synchronous. The partial synchrony model [37] lies in-between:

messages are guaranteed to be delivered within a time bound, but

the bound may be unknown to participants of the system.

In protocols for asynchronous systems, neither safety nor live-

ness can rely on timing assumptions. In contrast, a protocol built

for a synchronous or partially synchronous system risks having its

safety or liveness properties violated if the synchrony assumption

on which it depends is violated. For this reason, protocols built for

asynchronous systems are inherently more robust to timing and

denial-of-service (DoS) attacks [70, 94].

3



CCS ’18, October 15–19, 2018, Toronto, ON, Canada Sisi Duan, Michael K. Reiter, and Haibin Zhang

BFT SMR. We consider asynchronous Byzantine fault-tolerant

state machine replication (BFT SMR) protocols, where f out of n
replicas can fail arbitrarily (Byzantine failures) and a computation-

ally bounded adversary can coordinate faulty replicas.

The replicas collectively implement the abstraction of a key-

value store. A replica delivers operations, each submitted by some

client. All operations must be deterministic functions of the key-

value store contents. The client should be able to compute a final

response to its submitted operation from the responses it receives

from replicas. Correctness for a secure BFT SMR protocol is speci-

fied as follows.

• Agreement: If any correct replica delivers an operationm, then

every correct replica deliversm.

• Total order: If a correct replica has deliveredm1,m2, · · · ,ms
and another correct replica has deliveredm′

1
,m′

2
, · · · ,m′s ′ , then

mi =m
′
i for 1 ≤ i ≤ min(s, s ′).

• Liveness: If an operationm is submitted ton− f correct replicas,
then all correct replicas will eventually deliverm.

The liveness property has been referred to by other names, e.g.,

“fairness” in CKPS [21] and SINTRA [23], and “censorship resilience”

in HoneyBadgerBFT [70]. We use them interchangeably.

We consider two types of BFT SMR services.

BFT storage. A BFT storage service implements only read(key) and
write(key, val) operations. The former should return to the client

the current value for key in the key-value store, and the latter

should update the value of key in the key-value store to val.
General SMR. A general SMR service—which is our default concern,

unless specified otherwise—supports operations that consist of

arbitrary deterministic programs, or transactions, that operate on
the key-value store.

To support operations that are arbitrary transactions, each replica

will typically maintain the contents of the key-value store in its en-

tirety. Then, total order and the determinism of transactions ensures

that the key-value store contents remain synchronized at correct

replicas (assuming they begin in the same state). BFT storage can be

implemented in more space-efficient ways, e.g., with each replica

storing only an erasure-coded fragment for the value of each key

(e.g., [24, 41, 45, 46]).

Secure causal BFTprotocols.One of the BEAT instances achieves

causality, whichwe briefly recall as follows. Input causality prevents

the faulty replicas from creating an operation derived from a correct

client’s but that is delivered (and so executed) before the operation

from which it is derived. The problem of preserving input causality

in BFT atomic broadcast protocols was first introduced by Reiter

and Birman [79]. The notion was later refined by Cachin et al. [21]

and recently generalized by Duan et al. [35].

4 BUILDING BLOCKS
This section reviews the cryptographic and distributed systems

building blocks for BEAT.

Labeled threshold cryptosystems. We review robust labeled

threshold cryptosystem (i.e., threshold encryption) [85] where a

public key is associated with the system and a decryption key is

shared among all the servers. Syntactically, a (t ,n) threshold en-

cryption scheme ThreshEnc consists of the following algorithms.

A probabilistic key generation algorithm TGen takes as input a

security parameter l , the number n of total servers, and threshold

parameter t , and outputs (pk, vk, sk), where pk is the public key, vk
is the verification key, and sk = (sk1, · · · , skn ) is a list of private
keys. A probabilistic encryption algorithm TEnc takes as input a
public key pk, a messagem, and a label lb, and outputs a ciphertext
c . A probabilistic decryption share generation algorithm ShareDec
takes as input a private key ski , a ciphertext c , and a label lb, and
outputs a decryption share σ . A deterministic share verification

algorithm Vrf takes as input the verification key vk, a ciphertext
c , a label lb, and a decryption share σ , and outputs b ∈ {0, 1}. A
deterministic combining algorithm Comb takes as input the verifi-

cation key vk, a ciphertext c , a label lb, a set of t decryption shares,

and outputs a messagem, or ⊥ (a distinguished symbol).

We require the threshold encryption scheme to be chosen cipher-

text attack (CCA) secure against an adversary that controls up to

t − 1 servers. We also require consistency of decryptions, i.e., no

adversary that controls up to t − 1 servers can produce a ciphertext

and two t-size sets of valid decryption shares (i.e., where Vrf returns
b = 1 for each share) such that they yield different plaintexts.

For our purpose, we require a labeled threshold encryption

scheme [85]; threshold cryptosystems that do not support labels [10,

18] are not suitable.

Threshold PRF. We review threshold PRF (e.g., [22]), where a

public key is associated with the system and a PRF key is shared

among all the servers. A (t ,n) threshold PRF scheme for a func-

tion F consists of the following algorithms. A probabilistic key

algorithm FGen takes as input a security parameter l , the num-

ber n of total servers, and threshold parameter t , and outputs

(pk,vk, sk), where pk is the public key, vk is the verification key,

and sk = (sk1, · · · , skn ) is a list of private keys. A PRF share evalu-

ation algorithm Eva takes a PRF input c , pk , and a private key ski ,
and outputs a PRF share yi . A deterministic share verification algo-

rithm Vrf takes as input the verification key vk, a PRF input c , and
a PRF share yi , and outputs b ∈ {0, 1}. A deterministic combining

algorithm FCom takes as input the verification key vk, x , and a set

of t valid PRF shares, and outputs a PRF value y.1

We require the threshold PRF value to be unpredictable against

an adversary that controls up to t − 1 servers. We also require the

threshold PRF to be robust in the sense the combined PRF value for

c is equal to F(c).
We can use a direct implementation of threshold PRF [22] or can

use build a threshold PRF using threshold signatures [17, 83].

Erasure coding scheme. An (n,m) erasure coding scheme takes
as inputm data fragments and outputs n (n ≥ m) same-size coded
fragments. This essentially captures the encode algorithm of an

erasure code, but we (intentionally) leave the decode algorithm

undefined.

An (n, m) erasure coding scheme is systematic if the n coded

fragments contain the originalm data fragments and д = n −m
redundant fragments. Let di (i ∈ [1..m]) denote the data fragments,

and di (i ∈ [m + 1..n]) denote the redundant fragments. We have

di (i ∈ [1..n]) to denote all the coded fragments.

1
Our syntactic description of threshold encryption and threshold PRF can be made

more general and the algorithms are not necessarily non-interactive.

4



BEAT: Asynchronous BFT Made Practical CCS ’18, October 15–19, 2018, Toronto, ON, Canada

An (n,m) erasure coding scheme is maximum distance separable
(MDS) [69] if and only if all the data fragments can be recovered

from anym-size subset of coded fragments.

A systematic (n,m) erasure coding scheme is linear if each redun-
dant fragment di (i ∈ [m + 1..n]) is a linear combination of the data

fragments, i.e., di =
∑m
j=1 bi jdj , where bi j ’s are coding coefficients.

Basic pyramid codes.Huang et al. [51] introduced (basic) pyramid

codes to slightly trade space for access efficiency in erasure-coded

storage systems. For practical parameters, the pyramid codes can

reduce the access overhead by 50% with around 10% additional

storage overhead, compared to MDS erasure codes.

Pyramid codes can be efficiently built from any (n,m) system-

atic and MDS code that tolerates arbitrary д = n −m erasures as

defined above. Specifically, we divide them data fragments into L
equal-size

2
disjoint groups Sl (l ∈ [1..L]), each of which contains

m/L data fragments. Next, we keep д1 out of д redundant fragments

unchanged. These fragments are global redundant fragments. Then,
for each group Sl , we compute д0 = д − д1 group redundant frag-
ments and add them to each group, where the j-th group redundant

fragment, denoted dj,l , is a projection of the j-th redundant block

dm+j in the original MDS code onto that group, i.e., dj,l is com-

puted as dm+j except setting all the coding coefficients that do not

correspond to Sl to 0.

This yields an (m + д0L + д1,m) systematic and non-MDS code,

which has m data fragments and д0L + д1 redundant fragments,

where each of group Sl has д0 group redundant fragments. It is

important to note that new code is also linear.

We briefly describe two useful properties of the basic pyramid

codes [51]: (1) An (m + д0L + д1,m) pyramid code can tolerate

arbitrary д = д0 + д1 erasures; (2) Each equal-size group Sl is an
(m/L + д0,m/L) MDS code. To decode a data fragment, first try

from the group level. For each group Sl , if the number of the un-

available fragments is less than д0, any unavailable fragments can

be recovered. Otherwise, first recover all the unavailable fragments

from the group level, and then move to global level. One may needs

to compute the fragments in the original MDS code that correspond

to group redundant fragments, and then uses the conventional de-

coding algorithm of an MDS code to recover unavailable fragments.

d1 d2 d3 d4 d5 d6
(9,6)
MDS

d7-1

d7 d8 d9

(10,6)
Pyramid d8 d9d7-2

d1 d2 d3 d4 d5 d6

Figure 1: A basic (10,6) pyramid code from a (9,6) MDS code.

Figure 1 uses an example to describe pyramid codes and shows

how they can reduce read bandwidth and system I/O. The example

builds a (10, 6) pyramid code from a (9, 6) linear, MDS code. In

2
While there is no need to requirem divides L for pyramid codes, in practice one

almost always uses equal-size sets. Typically, L can be set to 2.

the (9, 6) MDS code, there are 6 data fragments and 3 redundant

fragments. The redundant fragments (d7, d8, and d9) are linear

combinations of the data fragments. For instance, d7 can be written

as d7 =
∑
6

j=1 b7jdj , where b7j ’s are coding coefficients.

We then divide the data fragments equally (setting L = 2),

and compute one redundant fragment for each group: d7−1 =∑
3

j=1 b7jdj and d7−2 =
∑
6

j=4 b7jdj , respectively. Clearly, we have

d7−1 + d7−2 = d7. They are local (group) redundant fragments, and

d8 and d9 are global redundant fragments. If the fragment d1 is not
available, one can just use 3 fragments (d2, d3, and d7−1) to recover

d1. If there is more than one failure in the local group, one would

need to use the traditional MDS decoding algorithm to recover the

faulty local fragment. One may need to compute the sum of d7−1
and d7−2 to recover d7 if necessary.

Fingerprinted cross-checksum.Afingerprinted cross-checksum

[45] is data structure used by a server to verify that its fragment

corresponds to a unique original data block. An (n,m) fingerprinted
cross-checksum fpcc consists of an array fpcc.cc[ ] of n values and

an array fpcc.fp[ ] ofm values. The first array is a cross-checksum [40,

60] that contains the n hashes of the n coded fragments. The sec-

ond array holds homomorphic fingerprints of data fragments that

preserve the property of linear codes. Let h be a collision-resistant

hash function and H be a hash function modeled as a random or-

acle. A homomorphic fingerprinting function fingerprint takes as
input a random key and a data fragment and outputs a small field

element. A fragment d is consistent with fpcc for index i ∈ [1..n],
if fpcc.cc[i] = h(d) and fingerprint(r ,d) = encode(fpcc.fp[1], · · · ,
fpcc.fp[m]), where r = H(fpcc.cc[1], · · · , fpcc.cc[n]).

A central theorem in [45, 46] is that for an (n,m) systematic, MDS,

and linear erasure coding scheme, no adversaryA can produce two

different sets ofm fragments such that each fragment is consistent

with fpcc for its index and they can be decoded into two different

data blocks with non-negligible probability.

Asynchronous verifiable information dispersal using finger-
printed cross-checksum. In an asynchronous verifiable informa-

tion dispersal (AVID) protocol [24], a client disperses a blockM to n
servers (where at most f of them might be faulty). The clients can

later retrieve the full blockM through the servers. The verifiability

of the protocol ensures that any two clients retrieve the same block.

An (n,m)-asynchronous verifiable information dispersal scheme

is a pair of protocols (disperse, retrieve) that satisfy the following

with high probability:

• Termination: If a correct client initializes disperse(M), then all

correct servers will eventually complete dispersal disperse(M).
• Agreement: If some correct server completes disperse(M), all
correct servers eventually complete disperse(M).
• Availability: If f + 1 correct servers complete disperse(M), a
correct client can run retrieve( ) to eventually reconstruct some

blockM ′.
• Correctness: If f + 1 correct servers complete disperse(M), all
correct clients that run retrieve( ) eventually retrieve the same

block M ′. If the client that initiated disperse(M) was correct,
thenM ′ = M .

5



CCS ’18, October 15–19, 2018, Toronto, ON, Canada Sisi Duan, Michael K. Reiter, and Haibin Zhang

Cachin and Tessaro [24] proposed an erasure-coded AVID, which

we call AVID-CT, To broadcast a messageM , the communication

complexity of AVID-CT is O(n |M |).
AVID-FP [45] is a bandwidth-efficient AVID using fingerprinted

cross-checksum. In AVID-FP, given a block B to be dispersed, the

dealer applies an (m,n) erasure coding scheme, wherem ≥ f + 1
and n = m + 2f . Here f is the maximum number of Byzantine

faulty servers that system can tolerate, and n is the total number of

servers. Then it generates the corresponding fingerprinted cross-

checksum for B with respect to the erasure coding scheme. Next,

the client distributes the erasure-coded fragments and the same

fingerprinted cross-checksum to the servers. Each server verifies

the correctness of the fragment that it receives according to the fin-

gerprinted cross-checksum and then, roughly speaking, leverages

the (much smaller) fingerprinted cross-checksum in place of the

fragment in the original AVID protocol. Different from AVID-CT, to

disperse a messageM , the communication complexity of AVID-FP

is O(|M |).

Byzantine reliable broadcast.Byzantine reliable broadcast (RBC),
also known as the “Byzantine generals’ problem,” was first intro-

duced by Lamport et al. [67]. An asynchronous reliable broadcast

protocol satisfies the following properties:

• Agreement: If two correct servers deliver two messagesM and

M ′ thenM = M ′.
• Totality: If some correct server delivers a messageM , all correct

servers deliverM .

• Validity: If a correct sender broadcasts a messageM , all correct

servers deliverM .

Bracha’s broadcast [19], one that assumes only authenticated

channels, is a well-known implementation of Byzantine reliable

broadcast. To broadcast amessageM , its communication complexity

is O(n2 |M |). Cachin and Tessaro [24] proposed both an erasure-

coded AVID (AVID-CT, mentioned above) and an erasure-coded

variant of Bracha’s broadcast — AVID broadcast, which reduces

the cost to O(n |M |) compared to that of Bracha’s broadcast. Note

that we explicitly distinguish among AVID-CT and AVID-FP (both

of which are verifiable information dispersal protocols) and AVID

broadcast (a RBC protocol).

5 REVIEWING HONEYBADGERBFT
This section provides an overview of HoneyBadgerBFT and related

primitives. We begin by introducing asynchronous common subset

(ACS).

Asynchronous common subset.HoneyBadgerBFT uses ACS [14,

21]. Formally, an ACS protocol satisfies the following properties:

• Validity: If a correct server delivers a set V , then |V | ≥ n − f
and V contains the inputs of at least n − 2f correct servers.

• Agreement: If a correct server delivers a set V , then all correct

servers deliver V .

• Totality: Ifn− f correct servers submit an input, then all correct

servers deliver an output.

ACS can trivially lead to asynchronous BFT: each server can

propose a subset of transactions, and deliver the union of the trans-

actions in the agreed-upon vector; sequence numbers can be then

assigned to the agreed transactions using any predefined but fixed

order.

HoneyBadgerBFT in a nutshell. HoneyBadgerBFT essentially

follows Ben-Or et al. [14], which uses reliable broadcast (RBC)

and asynchronous binary Byzantine agreement (ABA) to achieve

ACS. HoneyBadgerBFT cherry-picks a bandwidth-efficient, erasure-

coded RBC (AVID broadcast) [24] and the most efficient ABA [72] to

realize ACS. Specifically, HoneyBadgerBFT uses Boldyreva’s thresh-

old signature [17] to provide common coins for the randomized

ABA protocol [72]. HoneyBadgerBFT favors throughput over la-

tency by aggressively batching client transactions. It was shown

that HoneyBadgerBFT can outperform PBFT when the number of

servers exceeds 16 in terms of throughput in WANs, primarily be-

cause HoneyBadgerBFT distributes the network load more evenly

than PBFT [27].

trans0

trans1

trans2

trans3

RBC Yes
1

No
0
Yes
1
Yes
1

......

......

......

coin
ABA

coin

coin

coin

ABA0

ABA1

ABA2

ABA3

Figure 2: The HoneyBadgerBFT protocol.

As illustrated in Figure 2, the HoneyBadgerBFT protocol is com-

posed of two subprotocols/phases: RBC and ABA. In the RBC phase,

each replica first proposes a set of transactions and uses reliable

broadcast to disseminate its proposal to all other replicas. In the

second phase, n concurrent ABA instances are used to agree on an

n-bit vector bi for i ∈ [1..n], where bi indicates that if replica i’s
proposed transactions are included.

HoneyBadgerBFT proceeds in epochs. Let B be a batch size of

client transactions. In each epoch, each replica will propose B/n
transactions. Each epoch will commit Ω(B) transactions. To im-

prove efficiency, HoneyBadgerBFT ensures that each replica pro-

poses mostly disjoint sets of transactions. For this reason, it asks

replicas to propose randomly selected transactions. To prevent ad-

versary from censoring some particular transaction by excluding

whichever replicas propose it, HoneyBadgerBFT requires replicas

to use threshold encryption to encrypt transactions proposed to

avoid censorship.

HoneyBadgerBFT contains four distributed algorithms: a thresh-

old signature [17] that provides common coins for ABA, an ABA

protocol [72] that has expected running time O(1) (completing

within O(k) rounds with probability 1− 2−k ), a bandwidth-efficient

reliable broadcast [24], and a threshold encryption [10] to avoid

censorship and achieve liveness.

Roughly, the reliable broadcast dominates the bandwidth and

guides the selection of batch size. The threshold encryption scheme

and the threshold signature scheme use expensive cryptographic

operations, and they and the ABA dominate the latency of Honey-

BadgerBFT.

6



BEAT: Asynchronous BFT Made Practical CCS ’18, October 15–19, 2018, Toronto, ON, Canada

While HoneyBadgerBFT is the most efficient asynchronous BFT

protocol known, HoneyBadgerBFT favors throughput over other

performance metrics (latency, bandwidth, scalability). For instance,

HoneyBadgerBFT has rather high latency, which is particularly

visible in local area networks (LANs) [89]. This makes it difficult to

work in latency-critical applications. Indeed, it is desirable to have

asynchronous BFT protocols that are designed for different goals

(different performance metrics, different application scenarios).

6 BEAT0
This section describes BEAT0, our baseline protocol, that uses a set

of generic techniques to improve HoneyBadgerBFT. Specifically,

BEAT0 incorporates a more secure and efficient threshold encryp-

tion, a direct implementation of threshold coin flipping, and more

flexible and efficient erasure-coding support.

BEAT0 specification. Instead of using CPA/CCA-secure threshold
encryption that does not support labels, BEAT0 leverages a CCA-

secure, labeled threshold encryption [85] to encrypt transactions

while making the ciphertexts uniquely identifiable.
BEAT0 proceeds in epochs (i.e., rounds). Let r the current epoch

number. Let n be the total number of replicas. Let ThreshEnc =

(TGen, TEnc, ShareDec,Vrf,Comb) be a (f +1,n) labeled threshold
encryption scheme. Let pk and vk be threshold encryption public

key and verification key, respectively. Let ski be the private key for

replica i ∈ [1..n]. Let B be the batch size of BEAT0.

Each replica i ∈ [1..n] randomly selects a setT of transactions of

size B/n. It then computes a labeled threshold encryption ciphertext

(lb, c)
$

← TEncpk(lb,T ) where lb = (r , i). Next, each replica submits

the labeled ciphertexts to ACS as input. Each replica i , upon receiv-

ing some labeled threshold ciphertexts (r , j ′, c) from some other

replica j, does a sanity check to see if j = j ′ and if there is already

a different triple for the same r and j before proceeding. Namely,

each replica i only stores and processes one ciphertext from the

same j and the same r , and will discard ciphertexts subsequently

received for the same j and r .
After getting output from ACS, a replica i can run ShareDec to

decrypt the ciphertexts using its secret key ski , and broadcasts its

decryption shares. When receiving f + 1 valid shares (that pass

the verification of Vrf), a replica can use Comb to combine the

transactions.

Efficiently instantiating CCA secure labeled threshold en-
cryption.Weobserve that much of the latency inHoneyBadgerBFT

is due to usage of pairing-based cryptography, which is much slower

than elliptic curve cryptography (cf. [71]). We thus implement our

threshold encryption using the TDH2 scheme by Shoup and Gen-

naro [85] using the P-256 curve which provides standard 128-bit

security. TDH2 is secure against chosen-ciphertext attacks, under

the Decisional Diffie-Hellman (DDH) assumption in the random

oracle model [13].

Jumping ahead, while we use a stronger and functionally more

complex cryptographic scheme, our experiments show that doing

so actually improves the latency of HoneyBadgerBFT greatly.

Directly instantiating common coin protocol. Instead of using
a threshold signature to derive the common coins as in HoneyBad-

gerBFT and other multi-party computation protocols, we choose to

directly use threshold coin flipping. Specifically, we use the scheme

due to Cachin, Kursawe, and Shoup (CKS) [22] and implement it

again using the P-256 curve that provides 128 bits of security. The

threshold PRF scheme is proven secure under the Computational

Diffie-Hellman (CDH) assumption in the random oracle model.

Enabling more efficient and more flexible erasure coding.
HoneyBadgerBFT uses an erasure-coding library zfec [93] that sup-
ports Reed-Soloman codes only and supports at most 128 servers.

We integrate the C erasure coding library Jerasure 2.0 [73] with

our BEAT framework. This allows us to remove the restriction

that HoneyBadgerBFT can only support at most 128 replicas, use

more efficient erasure-coding schemes (e.g., Cauchy Reed-Soloman

codes [75]), and flexibly choose between erasure-coding scheme

parameters to improve performance.

Distributedkey generation.Our threshold encryption and thresh-
old PRF are discrete-log based, and BEAT0 and all subsequent BEAT

instances allow efficient distributed key generation [39, 57], which

should be run during setup. The implementation of distributed key

generation, however, is outside the scope of the present paper.

7 BEAT1 AND BEAT2 — LATENCY OPTIMIZED
This section presents two latency-optimized protocols in BEAT:

BEAT1 and BEAT2.

BEAT1. Via a careful study of latency for each HoneyBadgerBFT

subprotocol, we find that 1) most of latency comes from threshold

encryption and threshold signatures, and 2) somewhat surpris-

ingly, when the load is small and there is low contention, erasure-

coded reliable broadcast (AVID broadcast) [24] causes significant la-

tency. To test the actual latency overhead incurred by erasure-coded

broadcast, we implement a variant of HoneyBadgerBFT, HB-Bracha,

which replaces erasure-coded broadcast with a popular, replication-

based reliable broadcast protocol — Bracha’s broadcast [19]. We

find that when the client load is small, HB-Bracha outperforms

HoneyBadgerBFT in terms of latency by 20%∼60%. This motivates

us to devise BEAT1.

BEAT1 replaces the AVID broadcast protocol in BEAT0 with

Bracha’s broadcast. It turns out that when the load is small, BEAT1

is consistently faster than BEAT0, though the difference by percent-

age is not as significant as that between HB-Bracha and Honey-

BadgerBFT. However, when the load becomes larger, BEAT1 has

significantly higher throughput, just as the case betweenHB-Bracha

and HoneyBadgerBFT.

BEAT2. In BEAT0, our use of CCA-secure, labeled threshold en-

cryption is at the server side, to prevent the adversary from choos-

ing which servers’ proposals to include. BEAT2 opportunistically

moves the use of threshold encryption to the client side, while still

using Bracha’s broadcast as in BEAT1.

In BEAT2, when the ciphertexts are delivered, it is too late for

the adversary to censor transactions. Thus, the adversary does not

know what transactions to delay, and can only delay transactions

from specific clients. BEAT2 can be combined with anonymous

communication networks to achieve full liveness. BEAT2 addition-

ally achieves causal order [21, 35, 79], which prevents the adversary

from inserting derived transactions before the original, causally

prior transactions. Causal order is a rather useful property for

blockchain applications that process client transactions in a “first

7



CCS ’18, October 15–19, 2018, Toronto, ON, Canada Sisi Duan, Michael K. Reiter, and Haibin Zhang

come, first served” manner, such as trading services, financial pay-

ments, and supply chain management.

8 BEAT3 — BANDWIDTH OPTIMIZED BFT
STORAGE

This section presents BEAT3, an asynchronous BFT storage system.

BEAT3 significantly improves all performancemetrics that we know

of — latency (compared to HoneyBadgerBFT), bandwidth, storage

overhead, throughput, and scalability.

Deployment scenarios. Recall that the safety and liveness prop-

erties of BFT storage remain the same as those of general SMR,

with the only exception that the state may not be replicated at each

server (but instead may be erasure-coded). BEAT3 can be used for

blockchain applications that need append-only ledgers, and specific

blockchains where the consensus protocol serves as an ordering

service, such as Hyperledger Fabric [7, 87].

BEAT3. BEAT3 achieves better performance by using a novel com-

bination of a bandwidth-efficient information dispersal scheme

(AVID-FP [45]) and an ABA protocol [72]. In comparison, Hon-

eyBadgerBFT, BEAT0, BEAT1, and BEAT2 use a combination of

reliable broadcast and an ABA protocol.

AVID-FP has optimal bandwidth consumption which does not
depend on the number of replicas. The bandwidth required to dis-

perse a blockM in AVID-FP is only O(|M |), while the bandwidth in

AVID broadcast (used in HoneyBadgerBFT) is O(n |M |). Technically
speaking, AVID-FP has a much smaller communication complexity

than AVID-CT because replicas in AVID-FP agree upon a small

constant-size fingerprinted cross-checksum instead of on the block

itself (i.e., the bulk data).

Our basic idea is to replace AVID broadcast used in HoneyBad-

gerBFT with an (n,m) AVID-FP protocol, where n = m + 2f and

m ≥ f + 1. Accordingly, at the end of the AVID-FP protocol, each

replica now stores some fingerprinted cross-checksum and the cor-

responding erasure-coded fragment. There is, however, a challenge

to use the approach. In AVID-FP, a correct replica cannot recon-

struct its fragment if it is not provided by the AVID-FP client who

proposes some transaction (here, some other replica in our pro-

tocol). Namely, as mentioned by Hendricks et al. [45], even with

a successful dispersal, only f + 1 correct replicas, instead of all

correct replicas, may have the corresponding fragments. However,

ABA expects all correct replicas to deliver the transaction during

the broadcast/dispersal stage (to correctly proceed). Note that we

cannot trivially ask replicas in AVID-FP to reconstruct their indi-

vidual fragment or reconstruct the whole transaction, which would

nullify the bandwidth benefit of using AVID-FP.

We observe that AVID-FP actually agrees on the fingerprinted

cross-checksum of the transaction. It is good enough for us to

proceed to the ABA protocol once each replica delivers the finger-

printed cross-checksum. The consequence for BEAT3 is just as in

AVID-FP: at least f + 1 correct replicas have their fragments, and

some correct replicas may not have their fragments. This causes

no problem, as the data is retrievable using f + 1 =m correct frag-

ments. Each replica just needs to send the client the fingerprinted

cross-checksum and its fragment. The client can then reconstruct

the transaction.

More formally, validity, agreement, and totality of the ACS us-

ing AVID-FP follow directly from the properties of asynchronous

verifiable information dispersal, just as the case of using reliable

broadcast. The only difference is that the ACS using AVID-FP now

delivers a fingerprinted cross-checksum. We just need to prove that

our ACS is functionally correct. This follows easily from correctness

of asynchronous verifiable information dispersal: if a fingerprinted

cross-checksum is delivered, then the corresponding data (i.e., trans-

action) is retrievable, and all clients are able to retrieve the data

and the data was previously proposed by some server.

Bandwidth comparison. To order transactions of size B, the com-

munication complexity of BEAT1, BEAT2, andHB-Bracha isO(n2B),
the complexity of HoneyBadgerBFT and BEAT0 is O(nB), while
the communication complexity of BEAT3 is only O(B). This im-

provement is significant, as it allows running BEAT in bandwidth-

restricted environments, allows more aggressive batching, and

greatly improves scalability.

9 BEAT4 — FLEXIBLE READ
This section presents a general optimization for erasure-coded

BEAT instances that significantly reduce read bandwidth. For many

blockchain applications, particularly data-intensive ones, it is com-

mon for clients to read only a fraction of the data block. Additionally,

for many applications using smart contracts, clients may be inter-

ested in seeing the first few key terms of a large contract instead of

the lengthy, detailed, and explanatory terms.

Our technique relies on a novel erasure-coded reliable broadcast

protocol, AVID-FP-Pyramid, that reduces read bandwidth. AVID-

FP-Pyramid uses pyramid codes [51]. As reviewed in Sec. 4, a

(m+д0L+д1,m) pyramid code can tolerate arbitrary д = д0+д1 era-
sures. Let n =m+д0L+д1. We define for a (m+д0L+д1,m) pyramid

code a tailored fingerprinted cross-checksum. Our (m+д0L+д1,m)
fingerprinted cross-checksum fpcc consists of an array fpcc.cc[ ]
that holds the hashes of all n coded fragments. The second array

fpcc.fp[ ] still containsm values that are fingerprints of the firstm
data fragments, and because pyramid codes are linear, all the finger-

prints of coded fragments can be derived by thesem fingerprints,

just as all the coded fragments can be derived by the originalm
fragments.

We say a fragment d is consistent with fpcc for index i ∈ [1..n],
if fpcc.cc[i] = h(d) and fingerprint(r ,d)= encode (fpcc.fp[1], · · · ,
fpcc.fp[m]), where r = H(fpcc.cc[1], · · · , fpcc.cc[n]).

We extend the central theorem used in [45, 46] to the case of pyra-

mid codes and to the case for fragments. We derive the following

new lemma.

Lemma 9.1. For an (m+д0L+д1,m) fingerprinted cross-checksum
fpcc, any probabilistic adversaryA can produce with negligible prob-
ability a target data fragment index (resp., data fragment indexes)
and two sets of fragments (that may have different sizes) such that
each fragment is consistent with fpcc for its index and they can be
decoded into two different data fragments for the target index (resp.,
different sets of fragments for the target indexes).

The target data fragment index(es) may be an index of one of

data fragment, indexes of all data fragments, or any number of

indexes in between. The two set of fragments that A provides can

8



BEAT: Asynchronous BFT Made Practical CCS ’18, October 15–19, 2018, Toronto, ON, Canada

be of different sizes, and the decoding approaches for two sets may

differ (may it be a group level or global level decoding).

The proof the lemma is an adaptation to the one due to Hendricks

et al. [45, Theorem 3.4]. In proving Theorem 3.4 [45], the key claim is

that two different sets ofm fragments for the same fragment indexes

and the same consistent fingerprinted cross-checksum imply that

at least one fragment from the two sets is different, which is the

starting point of their proof. Following the same argument, we can

show that the probability that two fragments with the same index

are different is bounded by ϵ ′ + q · ϵ , where ϵ ′ is the advantage of
attacking the hash function, q is the total number random oracle

queries, and ϵ is the probability of the collisions in the fingerprinting
function. The proof applies to any linear erasure-coding schemes,

including pyramid codes.

AVID-FP-Pyramid. Now we describe AVID-FP-Pyramid, an asyn-

chronous verifiable information dispersal protocol that compared to

AVID-FP, further reduces read bandwidth. Instead of using a conven-

tional MDS erasure code, AVID-FP-Pyramid uses a pyramid code. In

an MDS code,m valid fragments can be used to reconstruct the orig-

inal block. In a pyramid code, we need in generalm+д0(L−1) valid
fragments to reconstruct the block. Therefore, we have to make sure

that in our newAVID protocol at leastm+д0(L−1)+f servers receive
consistent fragments, of which f servers might be faulty. Moreover,

one needs to make sure thatm +д0L +д1 ≥ m +д0(L − 1)+ 2f , i.e.,
f ≤ (д0 +д1)/2, which ensures that the total number of replicas do

not overflow.

Given a pyramid code (n,m) where n = m + д0L + д1 that can
tolerate arbitrary д = д0 + д1 erasures, we construct AVID-FP-

Pyramid where f ≤ m and f ≤ (д0 + д1)/2. Specifically, AVID-FP-
Pyramid consists of a triple of protocols (disperse, retrieve, read)
which are described as follows.

Dispersal. To disperse a block B, a client applies the (n,m) pyramid

code to generate n fragments {di }
n
i=1 and the fingerprinted cross-

checksum fpcc. The server then sends each server i its fragment di
and fpcc.

Upon receiving a disperse message, a server i verifies that the
fragment di is consistent with fpcc. (Concretely, server i checks
if fpcc.cc[i] = h(d) and fingerprint(r ,d)= encode (fpcc.fp[1], · · · ,
fpcc.fp[m]), where r = H(fpcc.cc[1], · · · , fpcc.cc[n]).) If this is true,
the server stores the fragment and sends an echo message contain-

ing fpcc (and only fpcc) to all servers.

Upon receivingm + д0(L − 1) + f echo messages with matching

fingerprinted cross-checksum fpcc, a server sends a ready message

containing fpcc to all servers.

If receiving f + 1 ready with matching fingerprinted cross-

checksum fpcc, and if a server does not yet send a ready message,

it sends a ready message to all other servers.

Upon receiving 2f + 1 ready messages with matching fpcc, it
stores and delivers fpcc.
Retrieval. The retrieval protocol is almost the same as that in AVID-

FP, with only a parameter difference. To retrieve a block, a client
retrieves a fragment and fingerprinted cross-checksum from each

server, waiting for matching fingerprinted cross-checksums from

f + 1 servers and consistent fragments fromm + д0(L − 1) servers.
These fragments are then decoded and the resulting block is re-

turned.

Read. To read a single fragment di , one could choose one of the

following two options. In the first option, which we term as the
optimistic mode, a client requests from all servers the fingerprinted

cross-checksum and only the target server i for the fragment. If it

does not receive the fragment in time (set arbitrarily by the client),

it queries the servers at the group level that contains the server i ,
and all servers in the local group should send their fragments. The

client will repeat the procedure from the group level until it receives

m + д0(L − 1) fragments with matching fpcc and then recovers the

fragment. In the second, which we term as the balanced mode, a
client directly queries all servers at the group level, expecting the

fragments from these group level servers.

Definition and security.While we could be more general, we pro-

vide a definition for AVID-FP-Pyramid that is specifically tailored

for our purpose.

An (n,m)-asynchronous verifiable information dispersal scheme

is a triple of protocols (disperse, retrieve, read) that satisfy the

following with high probability:

• Termination: If a correct client initializes disperse(M) then all

correct servers will eventually complete dispersal disperse(M).
• Agreement: If some correct server completes disperse(M), all
correct servers eventually complete disperse(M).
• Availability: If f + 1 correct servers complete disperse(M),
a correct client can run retrieve( ) to eventually reconstruct

some blockM ′. Additionally, if f + 1 correct servers complete

disperse(M), a correct client can run read(i) where i ∈ [1..m] to
eventually obtain a fragment di .
• Correctness: If f + 1 correct servers complete disperse(M), all
correct clients that run retrieve( ) eventually retrieve the same

block M ′. If the client that initiated disperse(M) was correct,
then M ′ = M . Additionally, if f + 1 correct servers complete

disperse(M), all correct clients that run read(i) for i ∈ [1..m]
eventually obtain the same fragmentd ′i . If the client that initiated
disperse(M) was correct, then d ′i = di , where di is the i-th data

fragment ofM .

Theorem 9.2. AVID-FP-Pyramid is an asynchronous verifiable
information dispersal protocol as defined above.

BEAT-FR. Replacing the AVID-FP protocol in BEAT3 with our

AVID-FP-Pyramid protocol, we obtain a new BFT storage protocol

— BEAT-FR which has reduced read bandwidth.

Corollary 9.3. BEAT-FR is a BFT storage.

Instantiating BEAT-FR: BEAT4. BEAT-FR is a generic asynchro-

nous BFT framework that reduces read bandwidth. BEAT4 is an

instantiation to BEAT-FR for concrete parameters. In BEAT4, we

set L = 2,m is even, and д0 = 1, which allows us to tolerate one

failure within the local group, and reduces the read bandwidth by

50%. In BEAT4, we have n =m + 2f + 1,m = f + 1, and n = 3m − 1.
Note that the number of echo messages which a replica has to wait

before it can send ready message in BEAT4 ism + f .

Technique applicability. We comment that our technique pre-

sented in the section is general. While it is described for the setting

of AVID-FP, it can be applied to all erasure-coded asynchronous

verifiable information dispersal and erasure-coded reliable broad-

cast protocols, including AVID-CT [24] and AVID broadcast [24].

9



CCS ’18, October 15–19, 2018, Toronto, ON, Canada Sisi Duan, Michael K. Reiter, and Haibin Zhang

Therefore, the technique can be used to improve both erasure-coded

BFT storage (BEAT3) and general SMR (BEAT0).

10 IMPLEMENTATION AND EVALUATION
10.1 Implementation
We utilize the HoneyBadgerBFT prototype as the baseline to imple-

ment six asynchronous BFT protocols, including five BEAT proto-

cols (BEAT0 to BEAT4) and HB-Bracha. HB-Bracha is implemented

to understand the latency overhead caused by erasure coding. HB-

Bracha replaces the underlying erasure-coded reliable broadcast

(AVID broadcast) with Bracha’s Broadcast [19], with the rest of the

components intact.

Each of the six protocols involves 6,000 to 8,000 lines of code in

Python. The underlying erasure-coding schemes (Reed-Soloman

codes and pyramid codes) and fingerprinted cross-checksum, how-

ever, are implemented in C. The design and implementation of

BEAT is modular, and we have implemented the following building

blocks for the protocols.

Erasure coding support. HoneyBadgerBFT is 100% Python, and

uses the zfec library to implement the Reed-Soloman code, an MDS

erasure code. The zfec library, while popular in Python projects,

suffers from both efficiency and usability issues: it supports only the

traditional Reed-Soloman code implementation and supports only a

word size (finite field size, a key tunable parameter in erasure coding

for efficiency) of 8. Moreover, due to the usage of an erasure-coding

library zfec [93], HoneyBadgerBFT supports at most 2
8
replicas.

In BEAT, we instead use Jerasure 2.0 [73], a C library for erasure-

coding, to implement the underlying erasure-coding schemes (in-

cluding Reed-Soloman codes and pyramid codes). Jerasure 2.0 sup-

ports a variety of other coding schemes (including Cauchy Reed-

Soloman codes [75]), and allows fine-grained parameter tuning.

Fingerprinted cross-checksum. We observe that for efficiency

reasons one cannot separate the implementation of fingerprinting

functions from the underlying erasure-coding support. The only

implementation of fingerprinting is due to Hendricks et al. [45, 46].

They implemented their own erasure coding scheme using Rabin’s

information dispersal scheme [77] and the corresponding finger-

printed cross-checksum using Shoup’s NTL [84]. While their fin-

gerprinted cross-checksum is efficient, the erasure coding scheme

is rather slow.

In contrast, we use GF-Complete [74], the Jerasure’s underlying

Galois Field library using Intel SSID, to implement the fingerprinted

cross-checksum primitive. Erasure coding schemes have three pa-

rameters n, m, and w , where n is the number of fragments (also

the number of replicas),m is the number of data fragments (where

m = f +1 in our protocols), andw is the word size (the index size of

the Galois Field GF(2w )). It is required that n +m < 2
w
and there-

fore n < 2
w
. The word sizew is typically set to be between 4 and

16 for efficiency, and indeedw = 32 is the largest value supported

by Jerasure. However, for our applications, we need to use larger

w = 64 or 128 for the security of fingerprinted cross-checksum. We

therefore extend Jerasure to include these largew’s.

The specific fingerprinting function we implemented is the eval-
uation fingerprinting [82]. Currently, we apply Horner’s rule to

evaluate the polynomial directly, without leveraging faster lookup

tables. While the implementation can be further improved, we find

that the implementation can already improve all performance met-

rics significantly. We implement fingerprinted cross-checksum in

C, with 3,500 lines of code.

Finally, we use Cython [11] to wrap the C code in Python and sup-

port functions including Reed-Solomon codes, pyramid codes, ma-

trix generation, coding padding, and fingerprinted cross-checksum.

The implementation involves around 1,000 lines of code in Python.
3

Threshold cryptography. We use the TDH2 scheme [85] for

CCA-secure labeled threshold encryption and the threshold PRF

scheme [22] for distributed coin flipping.We implement both schemes

using the Charm [2] Python library. We use NIST recommended

P-256 curve to implement both schemes to provide standard 128-bit

security.

10.2 Evaluation
Overview.We deploy and test our protocols on Amazon EC2 uti-

lizing up to 92 nodes from ten different regions in five different

continents. Each node is a general purposed t2.medium type with

two virtual CPUs and 4GB memory. We evaluate our protocols in

both LAN and WAN settings, where the LAN nodes are selected

from the same Amazon EC2 region, and the WAN nodes are uni-

formly selected from different regions. We evaluate the protocols

under different network sizes (number of replicas) and contention

levels (batch sizes). For each experiment, we use f to represent the

network size, where 3f + 1 nodes are launched in total for BEAT0

to BEAT3, HB-Bracha, and HoneyBadgerBFT (abbreviated as HB

in the figures), and 3f + 2 nodes are used for BEAT4. We vary the

batch size where nodes propose 1 to 20,000 transactions at a time.

Bandwidth. The protocols mentioned above have rather different

communication complexity. To order transactions of size B, the
communication complexity of BEAT1, BEAT2, and HB-Bracha is

O(n2B), the communication complexity of HoneyBadgerBFT and

BEAT0 is O(nB), while the communication complexity of BEAT3 is

only O(B). The consequence for throughput is significant: with the

same bandwidth, BEAT3 and BEAT4 can process an order of mag-

nitude more batched transactions, leading to significantly higher

throughput. Our evaluation, however, does not set the bandwidth

this way, but rather assumes the bandwidth is ample and assumes

all protocols use the same batch size. The readers should be aware
that BEAT3 and BEAT4 have much higher throughput if using a larger
batch size.
Latency. We first evaluate the latency in the LAN setting with

f = 1, 2, 5, 10, and 15, respectively. We examine and compare the

average latency under no contention where each node proposes a

single transaction (with variable size) at a time and no concurrent

requests are sent by the clients. In the LAN setting, network latency

is relatively small, so the overhead is mainly caused by the protocols

themselves. We report our result for f = 1, 2 in Figure 3.

When f = 1, BEAT0, BEAT1, BEAT2, and BEAT3 are around 2×

faster than HoneyBadger, and when f becomes larger, they are even

faster than HoneyBadger. When f = 1, BEAT4 is about as fast as

3
PyECLib [76] is popular python library for erasure-coding: it has a Python interface

but implements C based library, Liberasurecode [61], which allows us to use existing

erasure-coding library such as Jerasure[73] and Intel(R) ISA-L. We choose not to use

PyECLib, primarily because the underlying Liberasurecode has implemented data

structures that are not necessary for our purpose. We therefore (have to) write our

own wrapper for Jerasure and fingerprinted cross-checksum using Cython [11].

10



BEAT: Asynchronous BFT Made Practical CCS ’18, October 15–19, 2018, Toronto, ON, Canada

f = 1 f = 2

0

0.5

1

1.5

0.21

1.47

0.1

0.54

0.09

0.58

0.13

0.8

0.08

0.49

0.09

0.44

0.23

1.06

L
a
t
e
n
c
y
(
S
e
c
)

HB BEAT0

BEAT1 HB-Bracha

BEAT2 BEAT3

BEAT4

Figure 3: Latency of the protocols in the LAN setting under
no contention.

0 0.05 0.1 0.15 time(s)

HB

BEAT0

BEAT1

HB-Bracha

Encrypt Consensus Decrypt

Figure 4: Latency breakdown in the LAN setting with f = 1.

HoneyBadger. This is primarily because BEAT4 has one more node,

and the added overhead for the underlying consensus protocols and

threshold cryptography is particularly visible when f is small. As

f increases, HoneyBadger is much slower than BEAT4. Meanwhile,

the difference between BEAT3 and BEAT4 becomes smaller; when

f is 15, we barely notice the difference between them (not shown).

The differences among BEAT0, BEAT1, and BEAT2 are rather

small when the batch size is 1, but becomes much more visible

when the batch size becomes larger. However, the difference be-

tween BEAT1 and BEAT2 is not as large as the difference between

HoneyBadger and HB-Bracha. Meanwhile, when the batch size

exceeds 1,000, BEAT0 becomes faster than BEAT1 (not shown).

We further assess the latency breakdown for HoneyBadgerBFT,

BEAT0, BEAT1, and HB-Bracha in order to better understand why

we have these results. As illustrated in Figure 4, we evaluate the time

for encrypting transactions, consensus protocols, and decrypting

and combining transactions. We find the encryption and decryption

for BEAT0 and BEAT1 are about three times faster than those in

HoneyBadger and HB-Bracha. In addition, BEAT0 and BEAT1 use

threshold PRF to produce the common coins for the consensus,

and the latency of the consensus is also reduced by about 50%. HB-

Bracha also achieves lower latency than HoneyBadgerBFT due to

the use of latency-optimized Bracha’s broadcast. This also explains

why BEAT1 has lower latency than BEAT0 when the batch size is

small.

Throughput.We evaluate the throughput of the protocols under

different contention levels.We present the results in the LAN setting

in Figure 5(a) and the the result in the WAN setting in Figure 5(b).

Both cases set f = 1. We also show latency vs. throughput in

Figure 5(c).

We first notice that BEAT0 slightly outperforms HoneyBad-

gerBFT in both settings. This is expected since BEAT0 employs

optimized threshold cryptography. This also matches the result

for the latency under no contention. In comparison, while BEAT1,

BEAT2, and HB-Bracha are latency optimized, they do not outper-

form HoneyBadgerBFT in terms of throughput. We observe that in

both the LAN setting and WAN setting, BEAT1, BEAT2, and HB-

Bracha achieve higher throughput than HoneyBadgerBFT when

the batch size is small. However, when batch size is higher than

5000, all the three protocols have 20% to 30% lower throughput

than HoneyBadgerBFT. This is mainly because HB-Bracha con-

sumes higher network bandwidth, which causes degradation when

the batch size is large. This underscores the wisdom in designing

HoneyBadgerBFT.

BEAT3 and BEAT4 outperform HoneyBadgerBFT consistently.

They also outperform BEAT0, BEAT1, and BEAT2 consistently,

though under low contention in the LAN setting, BEAT1 has larger

throughput than the other protocols. These results also meet our

expectation since BEAT3 and BEAT4 are bandwidth optimized.

Again, we stress that we compare the performance of the protocols

under the same batch size. BEAT3 and BEAT4 actually use much

lower network bandwidth than the other protocols, and so for the

same bandwidth budget, BEAT3 and BEAT4 (with more aggressive

batching) will achievemuch better throughput compared with other

protocols.

Scalability.We evaluate the scalability of BEAT0, BEAT3, and Hon-

eyBadger by varying f from 1 to 30. We report our comparison

between BEAT3 and HoneyBadger in Figure 5(d) (without BEAT0,

for ease of illustration). We observe that the throughput for both

protocols is in general higher when the number of replicas is smaller.

Peak throughput for BEAT3 is reached in all the cases when the

batch size is greater than 15,000. In the most extreme case for our

experiment, where f = 30 and batch size is 20,000, the average

latency is about 1.5 minutes. As we can see in the figure, BEAT3

outperforms HoneyBadgerBFT in all the cases. However, the dif-

ference between BEAT3 and HoneyBadgerBFT becomes smaller as

the number of replicas grows. This is in part due to the fact that in

large-scale networks, network latency may dominate the overhead

of the protocol. BEAT0 has performance between BEAT3 and Hon-

eyBadger, and again when f increases their difference becomes

smaller.

11 LESSONS LEARNED
We implemented six new protocols (BEAT instances andHB-Bracha).

Whilemany of these protocols use similar components, maintaining,

deploying, and comparing different BEAT instances takes tremen-

dous effort. While one of our goals is to make BEAT modular and

extensible, in practice it is still challenging to develop all the vari-

ants of the protocols. This is in part because even for the same

function (e.g., threshold encryption), different APIs need to main-

tained. In fact, changing a small function in a BEAT instance may

need to touch a large number of related functions accordingly.

On the other hand, we find that perhaps surprisingly, it may

be easier to develop and deploy asynchronous BFT than partially

synchronous BFT, for at least two reasons. First, protocols assuming

partial synchrony rely on view change subprotocols, which are very

11



CCS ’18, October 15–19, 2018, Toronto, ON, Canada Sisi Duan, Michael K. Reiter, and Haibin Zhang

0 0.5 1 1.5 2

·104

0

0.5

1

1.5

2

2.5
·104

Batch Size

T
h
r
o
u
g
h
p
u
t
(
t
x
/
s
e
c
)

HB BEAT0

BEAT1 HB-Bracha

BEAT2 BEAT3

BEAT4

(a) Throughput for f = 1where the nodes are from the sameAmazon

EC2 region.

0 0.5 1 1.5 2

·104

0

1,000

2,000

3,000

4,000

Batch Size

T
h
r
o
u
g
h
p
u
t
(
t
x
/
s
e
c
)

HB BEAT0

BEAT1 HB-Bracha

BEAT2 BEAT3

BEAT4

(b) Throughput for f = 1 where the nodes are from 4 Amazon EC2

regions in different continents.

0 500 1,000 1,500 2,000 2,500 3,000
0

5

10

15

Throughput (tx/sec)

L
a
t
e
n
c
y
(
S
e
c
)

HB BEAT0 BEAT1

HB-Bracha BEAT2 BEAT3

BEAT4

(c) Latency vs. Throughput in the WAN setting with f = 1.

0 0.5 1 1.5 2

·104

0

1,000

2,000

3,000

Batch Size

T
h
r
o
u
g
h
p
u
t
(
t
x
/
s
e
c
)

f = 1 f = 2

f = 5 f = 15

f = 20 f = 30

(d) Scalability of BEAT3 and HoneyBadgerBFT. Solid lines represent

the BEAT3. Dashed lines with the same mark represent the result for

HoneyBadgerBFT with the same number of replicas.

Figure 5: Performance of the protocols. (The pictures are best viewed in color.)

difficult to implement well from our own experience and from the

fact that a significant number of academic papers choose not to

implement the view change protocols. Second, because of native

robustness against timing and liveness attacks for asynchronous

BFT, we simply do not need to take further measures to ensure

robustness.

12 CONCLUSION
We describe the design and implementation of BEAT, a family of

practical asynchronous BFT protocols that are efficient, flexible,

versatile, and extensible. We deploy and evaluate the five BEAT

protocols using 92 instances on Amazon EC2, and we show BEAT

protocols are significantly more efficient than HoneyBadgerBFT,

the most efficient asynchronous BFT known. We also develop new

distributed system ingredients, including generalized fingerprinted

cross-checksum and new asynchronous verifiable information dis-

persal, which might be of independent interest.

ACKNOWLEDGMENT
The authors are indebted to our shepherd Haibo Chen and the

CCS reviewers for their helpful comments that greatly improve our

paper.

REFERENCES
[1] M. Abd-El-Malek, G. Ganger, G. Goodson, M. K. Reiter, and J. Wylie. Fault-scalable

Byzantine fault-tolerant services. SOSP 2005.
[2] J. A. Akinyele, et al. Charm: a framework for rapidly prototyping cryptosystems.

Journal of Cryptographic Engineering, 3(2):111–128, 2013.
[3] Amazon Web Services (AWS). https://aws.amazon.com/

[4] Y. Amir, B. Coan, J. Kirsch, and J. Lane. Prime: Byzantine replication under attack.

IEEE TDSC, 8(4):564–577, 2011.
[5] Hyperledger Whitepaper: An introduction to Hyperledger. https:

//www.hyperledger.org/wp-content/uploads/2018/08/HL_Whitepaper_

IntroductiontoHyperledger.pdf

[6] E. Androulaki, C. Cachin, D. Dobre, and M. Vukolic. Erasure-coded Byzantine

storage with separate metadata. OPODIS 2014, pp. 76–90, 2014.
[7] E. Androulaki et al. Hyperledger Fabric: a distributed operating system for per-

missioned blockchains. EuroSys 2018.
[8] P-L. Aublin, R. Guerraoui, N. Knezevic, V. Quema, and M. Vukolic. The next 700

BFT protocols. TOCS, vol. 32, issue 4, January 2015.

[9] P-L. Aublin, S. Mokhtar, and V. Quema. RBFT: Redundant Byzantine fault toler-

ance. ICDCS 2013.

12

https://www.hyperledger.org/wp-content/uploads/2018/08/HL_Whitepaper_IntroductiontoHyperledger.pdf
https://www.hyperledger.org/wp-content/uploads/2018/08/HL_Whitepaper_IntroductiontoHyperledger.pdf
https://www.hyperledger.org/wp-content/uploads/2018/08/HL_Whitepaper_IntroductiontoHyperledger.pdf


BEAT: Asynchronous BFT Made Practical CCS ’18, October 15–19, 2018, Toronto, ON, Canada

[10] J. Baek and Y. Zheng. Simple and efficient threshold cryptosystem from the gap

Diffie-Hellman group. GLOBECOM ’03, pp. 1491–1495, 2003.
[11] S. Behnel, et al. Cython: The best of both worlds. Computing in Science & Engi-

neering, 13(2:31–39, 2011.
[12] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message

authentication. CRYPTO 1996.
[13] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for design-

ing efficient protocols. CCS 93, 1993.
[14] M. Ben-Or, B. Kelmer, and T. Rabin. Asynchronous secure computations with

optimal resilience. PODC 94.
[15] A. Bessani, E. Alchieri, M. Correia, and J. Fraga. DepSpace: A Byzantine fault-

tolerant coordination service. EuroSys ’08.
[16] A. Bessani, J. Sousa, and E. Alchieri. State machine replication for the masses

with BFT-SMART. DSN ’14.
[17] A. Boldyreva. Efficient threshold signature, multisignature and blind signature

schemes based on the gap-Diffie-Hellman-group signature scheme. PKC 2003.
[18] D. Boneh, X. Boyen, and S. Halevi. Chosen ciphertext secure public key threshold

encryption without random oracles. CT-RSA, 2006.
[19] G. Bracha. Asynchronous Byzantine agreement protocols. Information and Com-

putation 75, pp. 130–143, 1987.

[20] M. Burrows. The Chubby lock service for loosely-coupled distributed systems.

OSDI, 2006.
[21] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup. Secure and efficient asynchronous

broadcast protocols (extended abstract). CRYPTO 2001.
[22] C. Cachin, K. Kursawe, and V. Shoup. Random oracles in Constantinople: Practical

asynchronous Byzantine agreement using cryptography. Journal of Cryptology
18(3), 219–246.

[23] C. Cachin and J. Poritz. Secure Intrusion-tolerant replication on the Internet. DSN
2002, pp. 167–176, 2002.

[24] C. Cachin and S. Tessaro. Asynchronous verifiable information dispersal. SRDS
2005.

[25] C. Cachin and S. Tessaro. Optimal resilience for erasure-coded Byzantine dis-

tributed storage. DSN-DCCS 2006, pp. 115–124, 2006.
[26] B. Calder et al. Windows Azure Storage: A highly available cloud storage service

with strong consistency. ACM SOSP, 2011.
[27] M. Castro and B. Liskov. Practical Byzantine fault tolerance and proactive recov-

ery. ACM Trans. Comput. Syst, 20(4): 398–461, 2002.
[28] A. Clement, E. Wong, L. Alvisi, M. Dahlin, and M. Marchetti. Making Byzantine

fault tolerant systems tolerate Byzantine faults. NSDI 2009.
[29] J. Corbett et al. Spanner: Google’s globally-distributed database. OSDI, 2012.
[30] Corda. https://github.com/corda/corda

[31] J. Cowling et al. HQ replication: A hybrid quorum protocol for Byzantine fault

tolerance. OSDI 2006.
[32] D. Dobre, G. Karame, W. Li, M. Majuntke, N. Suri, and M. Vukolic. PoWerStore:

Proofs of writing for efficient and robust storage. ACM CCS, 2013.
[33] S. Duan, H. Meling, S. Peisert, and H. Zhang. BChain: Byzantine replication with

high throughput and embedded reconfiguration. OPODIS 2014.
[34] Sisi Duan, Sean Peisert, and Karl Levitt. hBFT: Speculative Byzantine fault toler-

ance with minimum cost. IEEE Transaction on Dependable and Secure Computing,
12(1): 58–70, 2015.

[35] S. Duan, M. K. Reiter, and H. Zhang. Secure causal atomic broadcast, revisited.

DSN 2017.
[36] S. Duan and H. Zhang. Practical state machine replication with confidentiality.

SRDS, 2016.
[37] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial

synchrony. J. ACM 35(2): 288–323, 1988.

[38] M. Fischer, N. Lynch, and M. Paterson. Impossibility of distributed consensus

with one faulty process. J. ACM 32(2): 374–382, 1985.

[39] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure distributed key genera-

tion for discrete-log based cryptosystems. J. Cryptology 20(1): 51–83 (2007)

[40] L. Gong. Securely replicating authentication services. ICDCS, pp. 85–91, IEEE
Computer Society, 1989.

[41] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Reiter. Efficient Byzantine-

tolerant erasure-coded storage. DSN-DCCS 2004, pp. 135–144, 2004.
[42] K. M. Greenan, X. Li, and J. J. Wylie. Flat XOR-based erasure codes in storage sys-

tems: Constructions, efficient recovery, and tradeoffs. IEEE Mass Storage Systems
and Technologies, 2010.

[43] J. L. Hafner. Weaver codes: Highly fault tolerant erasure codes for storage systems.

USENIX FAST, 2005.
[44] J. L. Hafner. HoVer erasure codes for disk arrays. DSN, 2006.
[45] J. Hendricks, G. R. Ganger, and M. K. Reiter. Verifying distributed erasure-coded

data. PODC 2007, pp. 139–146, 2007.
[46] J. Hendricks, G. R. Ganger, and M. K. Reiter. Low-overhead Byzantine fault-

tolerant storage. SOSP 2007, 2007.
[47] M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Lan-

guages and Systems, 13(1):124–149, 1991.

[48] M. Herlihy and J. Wing. Linearizability: a correctness condition for concurrent

objects. ACM Transactions on Programming Languages and Systems, 12(3):463–
492, 1990.

[49] M. Herlihy, V. Luchangco, andM.Moir. Obstruction-free synchronization: Double-

ended queues as an example. Proceedings of the 23rd International Conference on
Distributed Computing Systems, pp. 522–529, IEEE Computer Society, 2003.

[50] Y. Hu, H. Chen, P. Lee, and Y. Tang. NCCloud: Applying network coding for the

storage repair in a Cloud-of-Clouds. USENIX FAST, 2012.
[51] C. Huang, M. Chen, and J. Li. Pyramid codes: Flexible schemes to trade space for

access efficiency in reliable data storage systems. ACM Transactions on Storage
(TOS), Volume 9 Issue 1, March 2013. Earlier version in NCA 2007.

[52] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, and S. Yekhanin.

Erasure coding in Windows Azure Storage. USENIX ATC’12, 2012.
[53] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. ZooKeeper:Wait-free coordination

for Internet-scale systems. USENIX ATC 2010.
[54] IBM Watson Health Announces Collaboration to Study the Use of Blockchain

Technology for Secure Exchange of Healthcare Data. https://www-03.ibm.com/

press/us/en/pressrelease/51394.wss

[55] IBM Announces Major Blockchain Solution to Speed Global Payments.

https://www-03.ibm.com/press/us/en/pressrelease/53290.wss

[56] Iroha. https://github.com/hyperledger/iroha

[57] A. Kate, Y. Huang, and I. Goldberg. Distributed key generation in the wild. IACR

Cryptology ePrint Archive 2012: 377 (2012).

[58] O. Khan, R. Burns, J. Plank, W. Pierce, and C. Huang. Rethinking erasure codes

for cloud file systems: Minimizing I/O for recovery and degraded reads. USENIX
FAST, 2012.

[59] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. Zyzzyva: Speculative

Byzantine fault tolerance. SOSP 2007.
[60] H. Krawczyk. Distributed fingerprints and secure information dispersal. Proceed-

ings of the 12th ACM Symposium on Principles of Distributed Computing, pp. 207–
218, ACM Press, 1993.

[61] Liberasurecode. https://github.com/openstack/liberasurecode

[62] L. Lamport. Concurrent reading and writing. Communications of the ACM 11(20),
806–811, 1977.

[63] L. Lamport. Time, clocks, and the ordering of events in a distributed system.

Comm. ACM 21, 7 (July), 558–565, 1978.
[64] L. Lamport. Using time instead of timeout for fault-tolerant distributed systems.

Trans. Prog. Lang. and Systems 6(2):254–280, 1984.
[65] L. Lamport. On interprocess communication. Part I: Basic formalism. Distrib.

Comput. 1, 2, 77–85, 1986.
[66] L. Lamport. On interprocess communication. Part II: Algorithms.Distrib. Comput.

1, 2, 86–101, 1986.
[67] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM

Trans. on Programming Languages and Systems 4(3): 382–401, 1982.
[68] Q. Lian, W. Chen, and Z. Zhang. On the impact of replica placement to the

reliability of distributed brick storage systems. ICDCS 2005, pp. 187–196, 2005.
[69] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error Correcting Codes. Ams-

terdam, North-Holland, 1977.

[70] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song. The honey badger of BFT

protocols. ACM CCS 16, 2016.
[71] D. Moody, R. Peralta, R. Perlner, A. Regenscheid, A. Roginsky, and L. Chen. Report

on pairing-based cryptography. Journal of Research of the National Institute of
Standards and Technology, 2015.

[72] A. Mostefaoui, H. Moumen, and M. Raynal. Signature-free asynchronous Byzan-

tine consensus with t < n/3 and O(n2) messages. PODC 2014.
[73] J. Plank and K. Greenan. Jerasure 2.0. http://jerasure.org/jerasure-2.0/

[74] J. Plank, K. Greenan, and E. Miller. Screaming fast Galois field arith-

metic using Intel SIMD instructions. FAST 2013, 2013. Latest version:

http://lab.jerasure.org/jerasure/gf-complete

[75] J. Plank and L. Xu. Optimizing Cauchy Reed-Solomon codes for fault-tolerant

network storage applications. NCA 2006.
[76] PyECLib. https://pypi.python.org/pypi/PyECLib

[77] M. O. Rabin. Efficient dispersal of information for security, load balancing, and

fault tolerance. Journal of the ACM, 36(2):335–348, 1989.

[78] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. J. Soc.
Industrial Appl. Math, 1960.

[79] M. K. Reiter and K. Birman. How to securely replicate services. ACM TOPLAS,
vol. 16 issue 3, pp. 986–1009, ACM, 1994.

[80] M. Sathiamoorthy. et al. XORing elephants: novel erasure codes for big data.

Journal Proceedings of the VLDB Endowment volume 6, issue 5, pp. 325–336, 2013.

[81] F. Schneider. Implementing fault-tolerant services using the state machine ap-

proach: A tutorial. ACM Comput. Surveys 22(4): 299–319, 1990.
[82] V. Shoup. On fast and provably secure message authentication based on universal

hashing. CRYPTO ’96, pages 313–328, 1996.
[83] V. Shoup. Practical threshold signatures. EUROCRYPT 2000.
[84] V. Shoup. NTL: A library for doing number theory. http://shoup.net/ntl

13

https://www-03.ibm.com/press/us/en/pressrelease/51394.wss
https://www-03.ibm.com/press/us/en/pressrelease/51394.wss


CCS ’18, October 15–19, 2018, Toronto, ON, Canada Sisi Duan, Michael K. Reiter, and Haibin Zhang

[85] V. Shoup and R. Gennaro. Securing threshold cryptosystems against chosen

ciphertext attack. EUROCRYPT ’98.
[86] SingularityNET. https://singularitynet.io/

[87] J. Sousa, A. Bessani, and M. Vukolic. A Byzantine fault-tolerant ordering service

for the Hyperledger Fabric blockchain platform. DSN 2018.
[88] Tendermint core. https://github.com/tendermint/tendermint

[89] H. Turki, F. Salgado, J. M. Camacho. HoneyLedgerBFT: Enabling

Byzantine fault tolerance for the Hyperledger platform. Available:

https://www.semanticscholar.org/

[90] R. van Renesse, C. Ho, and N. Schiper. Byzantine chain replication. OPODIS 2012.
[91] G. S. Veronese, M. Correia, A. N. Bessani, and L. C. Lung. Spin one’s wheels?

Byzantine fault tolerance with a spinning primary. SRDS 2009.
[92] Walmart, JD.com, IBM and Tsinghua University Launch a Blockchain Food Safety

Alliance in China. https://www-03.ibm.com/press/us/en/pressrelease/53487.wss

[93] Z. Wilcox-O’Hearn. Zfec 1.5.2. https://pypi.python.org/pypi/zfec

[94] L. Zhou, F. B. Schneider, R. van Renesse. APSS: proactive secret sharing in asyn-

chronous systems. ACM Trans. Inf. Syst. Secur. 8(3): 259–286 (2005)

A CORRECTNESS PROOF
Proof of Theorem 9.2. Termination is simple, as in AVID-FP. If a

correct server initiates disperse, the server erasures codes the trans-
action, and sends fragments and the fingerprinted cross-checksum

to each server. As the server initiating disperse is correct, at least
n− f ≥ m+д0(L− 1)+ f correct servers receive dispersemessages,

and send echo messages to all servers. Each server will eventually

receivem + д0(L − 1) + f echo messages, and then sends a ready
message, if it has not done so. Each correct server will eventu-

ally receive at lest 2f + 1 ready messages, and will then store the

fingerprinted cross-checksum and complete.

Agreement follows exactly as in AVID-FP. If some correct server

completes disperse(M), then the server must have received 2f +
1 ready messages and at least f + 1 ready messages much have

come from correct servers. This means that all correct servers

will eventually receive ready messages from these correct servers.

As our protocol implements the amplification step as in all other

Bracha’s broadcast like broadcast, all correct servers will send ready
messages, and all of them will eventually receive at least 2f + 1

ready messages. Agreement thus follows.

We first prove the first part of availability. In our protocol, if a

correct server completes disperse, it must have received 2f +1 ready
messages, and at least one correct server receivedm +д0(L− 1)+ f
echo messages. Therefore, at least m + д0(L − 1) correct servers

stored consistent fragments. According to the property of pyramid

codes, these fragments can be used to reconstruct the original block.

Accordingly, if f + 1 correct servers complete disperse, any client

that initiates retrievewill receivem+д0(L−1) consistent fragments

and f + 1 matching fingerprinted cross-checksums. The client can

then decode the fragments to generate some block.

We now prove the second part of availability. Following an anal-

ogous line of the above argument, if a correct server completes

disperse, at least m + д0(L − 1) correct servers stored consistent

fragments. If f + 1 correct servers complete disperse, any client

that initiates read(i) for i ∈ [1..m] will receive f + 1 matching

fingerprinted cross-checksums. If the fragment i happens to be

available or there is less than д0 failures in the local group, the

fragment will be available for the client. Otherwise, another round

of interaction is needed, and the client will obtainm + д0(L − 1)
consistent fragments and reconstruct the fragment needed.

We now prove correctness. We first claim that if some correct

server delivers fpcc
1
and some correct server delivers fpcc

2
, then

fpcc
1
= fpcc

2
. The proof is quite “standard” for a quorum based

protocol: if fpcc
1
is delivered thenm +д0(L− 1)+ f servers echoed

fpcc
1
, of which at leastm+д0(L− 1) is correct. The same applied to

fpcc
2
. As a correct server will only echo once, there are at least 2m+

2д0(L − 1) + f servers echoed, which is larger than the total server

(note that L ≥ 2 and 2f ≤ (д0 + д1)). This leads to a contradiction.

Thus, any block decoded during retrieve or any fragment during

read is consistent with the same fpcc. By Theorem 3.4 in [45] and

by Lemma 9.1, the probability that clients do not obtain the same

block or fragment(s) is negligible.

14

https://www-03.ibm.com/press/us/en/pressrelease/53487.wss

	Abstract
	1 Introduction
	2 Related Work
	3 System and Threat Model
	4 Building Blocks
	5 Reviewing HoneyBadgerBFT
	6 BEAT0
	7 BEAT1 and BEAT2 — Latency Optimized
	8 BEAT3 — Bandwidth Optimized BFT Storage
	9 BEAT4 — Flexible Read
	10 Implementation and Evaluation
	10.1 Implementation
	10.2 Evaluation

	11 Lessons Learned
	12 Conclusion
	References
	A Correctness Proof

